
Volume:4 Issue:12, December 1999

The World’s Leading Java Resource

TM

THE J2EE AND E-BUSINESS

Feature: JavaBeans Customized William Wright
Get the most horsepower out of your JavaBeans components 8

Strategies for Writing Java Stored Derek C. Ashmore
Oracle Databases 18

Java & Linux: Java for Linux Harry Foxwell
Interest is growing in these two technologies 32

OO Programming: Associations for EJBs Scott Danforth
Representation and support for associations can be crucial 40

e-Java: Splitting Tiers Focusing on the front-end Ajit Sagar
and middle tiers, and some alternative technologies 48

EJB Home: The Oracle at Boulder Jason Westra
The year of the application server boom is just about over. What happens next? 54

Feature: The Java 2 Enterprise Edition and e-Business Greg Flurry
J2EE promises the very characteristics needed for inexpensive,
rapid development and deployment of e-business applications 60

Web Application Architecture: Java Arny Epstein
2.2 Introduces the Web Application 70

Show Report: Fall Internet World Jim Milbery
A report on the trade show held recently in New York City 76

Book Review: An Introduction Ajit Sagar
to EJBs with Lots of Code 102

SYS-CON
PUBLICATIONS

Java COM

From the Editor
The Past

Through Tomorrow
by Sean Rhody pg. 7

Case Study
Software Development

Productivity
by Sam Watts pg. 36

Straight Talking
Java Is for Life...

Not Just for Christmas
by Alan Williamson pg. 14

Corba Corner
Santa Claus Is

a CORBA Object
by Jon Siegel pg. 24

SYS-CON Radio
Interview with

George Kassabgi
of Progress Software

pg. 28

RETAILERS PLEASE DISPLAY
UNTIL FEBRUARY 29, 2000

(BIG
4) 80%

EJB Marketshare

SUN

BEA

IBM

Other EJB servers 20%

ORACLE

Client Tier Middle Tier EIS Tier

HTML
Client

IIOP
Client

HTML
Client

HTTP
Client

HTTP
Client

Web
Server

FI
R

EW
A

LL

FI
R

EW
A

LL

Business-
Critical

Services
& Data

JSP

Application
Server

EJB
Servlet

Static Content
*.gif, *.html
*.wav, etc.

Developer-provided
components

Services provided by
the Web Container

Objects specified in the Servlet specification
that are available to a running Servlet

RequestDispatcher
(Used to forward or include)

Data and
Business
Objects

EJB
JDBC
other

Servlet

ServletRequest

M
ap

 U
RL

Co
lo

r K
ey

Au
th

en
tic

at
e

ServletResponse

HttpSession
(per-client state)

Servlet Context
(Application-wide state)

{

J
D

J
E

XCLUSIVE
!JAVA

CAREER

OPPORTUNITIES

SECTION P.87

JOB$

Java COM

2 DECEMBER 1999

BEA
www.beasys.com

3DECEMBER 1999

Java COM

PROTOVIEW
www.protoview.com

Java COM

4 DECEMBER 1999

SYMANTEC
www.symantec.com

5DECEMBER 1999

Java COM

FUAT KIRCAALI, PUBLISHER, JAVA DEVELOPER’S JOURNAL

We have exciting news for you. The qualified circulation of Java Developer’s Journal print
edition reached a record high of 70,017 for the June issue, according to BPA International’s
June 1999 initial audit report. For the June issue JDJ printed and distributed over 104,000
copies, including 13,000 bonus copies distributed at JavaOne in San Francisco. Show copies
were not included in JDJ’s qualified circulation figures. Based on the most current data avail-
able through BPA International (June statements), JDJ’s qualfied circulation now is higher
than Java Report and Java Pro combined.

JDJ’s single-copy sales also
reached a record high in April
among 10 leading consumer com-
puter titles. According to BPA Inter-
national, 13,179 copies were sold
on the newsstands, an impressive
net sales number – more than twice
as many as Microsoft Systems Jour-
nal, Web Techniques, C/C++ Users
Journal, Windows NT Systems and
others.

I’d like to personally thank you,
our readers, for making JDJ your
favorite Java magazine since our
premier issue more than four years
ago.

Java Developer’s Journal’s target print circulation is 160,000
copies, and online circulation is 3 million quarterly page views.
When the target numbers are achieved, JDJ will have the highest
circulation of all consumer software titles audited by BPA Inter-
national.

The last news I would like to share with you is that SYS-CON
Publications, publisher of Java Developer’s Journal was named
as the fastest-growing, privately held publishing company in
America. We ranked 194th in this year’s Inc. 500 list.

F R O M T H E P U B L I S H E R

fuat@sys-con.com

E D I T O R I A L A D V I S O R Y B O A R D
TED COOMBS, BILL DUNLAP, DAVID GEE, MICHEL GERIN,

ARTHUR VAN HOFF, JOHN OLSON, GEORGE PAOLINI,
KIM POLESE, SEAN RHODY, RICK ROSS,

AJIT SAGAR, RICHARD SOLEY, ALAN WILLIAMSON

EDITOR-IN-CHIEF: SEAN RHODY
EXECUTIVE EDITOR: M’LOU PINKHAM

ART DIRECTOR: ALEX BOTERO
PRODUCTION EDITOR: CHERYL VAN SISE

ASSOCIATE EDITOR: NANCY VALENTINE
EDITORIAL CONSULTANT: SCOTT DAVISON

TECHNICAL EDITOR: BAHADIR KARUV
PRODUCT REVIEW EDITOR: ED ZEBROWSKI

INDUSTRY NEWS EDITOR: ALAN WILLIAMSON
E-COMMERCE EDITOR: AJIT SAGAR

W R I T E R S I N T H I S I S S U E
DEREK C. ASHMORE, SCOTT DANFORTH, ARNY EPSTEIN, GREG FLURRY,
HARRY FOXWELL, JIM MILBERY, SEAN RHODY, AJIT SAGAR, JON SIEGEL,

SAM WATTS, JASON WESTRA, ALAN WILLIAMSON, WILLIAM WRIGHT

S U B S C R I P T I O N S
FOR SUBSCRIPTIONS AND REQUESTS FOR BULK ORDERS,

PLEASE SEND YOUR LETTERS TO SUBSCRIPTION DEPARTMENT

SUBSCRIPTION HOTLINE: 800 513-7111
COVER PRICE: $4.99/ISSUE

DOMESTIC: $49/YR. (12 ISSUES) CANADA/MEXICO: $69/YR.
OVERSEAS: BASIC SUBSCRIPTION PRICE PLUS AIRMAIL POSTAGE

(U.S. BANKS OR MONEY ORDERS). BACK ISSUES: $12 EACH

PUBLISHER, PRESIDENT AND CEO: FUAT A. KIRCAALI
VICE PRESIDENT, PRODUCTION: JIM MORGAN

VICE PRESIDENT, MARKETING: CARMEN GONZALEZ
CHIEF FINANCIAL OFFICER: IGNACIO ARELLANO
ACCOUNTING MANAGER: ELI HOROWITZ
CIRCULATION MANAGER: MARY ANN MCBRIDE

ADVERTISING ACCOUNT MANAGERS: ROBYN FORMA
MEGAN RING

JDJSTORE.COM: JACLYN REDMOND
ADVERTISING ASSISTANT: CHRISTINE RUSSELL
GRAPHIC DESIGN INTERN: AARATHI VENKATARAMAN

WEBMASTER: ROBERT DIAMOND
WEB EDITOR: BARD DEMA

WEB SERVICES CONSULTANT: BRUNO Y. DECAUDIN
WEB SERVICES INTERN: DIGANT B. DAVE

CUSTOMER SERVICE: SIAN O’GORMAN
ANN MARIE MILILLO

ONLINE CUSTOMER SERVICE: AMANDA MOSKOWITZ

E D I T O R I A L O F F I C E S
SYS-CON PUBLICATIONS, INC.

39 E. CENTRAL AVE., PEARL RIVER, NY 10965
TELEPHONE: 914 735-7300 FAX: 914 735-6547

SUBSCRIBE@SYS-CON.COM

JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944)
is published monthly (12 times a year) for $49.00 by

SYS-CON Publications, Inc., 39 E. Central Ave., Pearl River, NY 10965-2306.
Periodicals Postage rates are paid at

Pearl River, NY 10965 and additional mailing offices.
POSTMASTER: Send address changes to:

JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,
39 E. Central Ave., Pearl River, NY 10965-2306.

© C O P Y R I G H T
Copyright © 1999 by SYS-CON Publications, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy or any information storage and
retrieval system, without written permission. For promotional reprints, contact reprint
coordinator. SYS-CON Publications, Inc., reserves the right to revise, republish and

authorize its readers to use the articles submitted for publication.

W O R L D W I D E D I S T R I B U T I O N B Y
CURTIS CIRCULATION COMPANY

739 RIVER ROAD, NEW MILFORD NJ 07646-3048 PHONE: 201 634-7400

Java and Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc.,
in the United States and other countries. SYS-CON Publications, Inc., is independent of Sun
Microsystems, Inc. All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

SYS-CON
PUBLICATIONS

Java Developer’s Journal Circulation
Reaches New Record High

Java COM

6 DECEMBER 1999

NUMEGA
www.compuware.com/numega

7DECEMBER 1999

Java COM

I
t’s not often you get to write an end-of-the-millennium column (once every
thousand years, last time I checked). I thought that a little reminiscing about
the past few years might be in order, followed by a brief look in the crystal ball
to see what we have in store for you in the next century.
The first time I saw Java, it was 1996. Back then, few could imagine the

impact this small, object-oriented language would have on the world. I was
working in several 4GLs at the time and didn’t immediately see the value of
write once, run anywhere. As you can see, I’ve come around.

Java grew, slowly at a rapid pace. Sounds goofy, but when you think about it, it’s taken years to get
to where we are today, even if it seems that a new API or specification is released each week. We’re in
our third release of Java, counting 1.0, 1.1 and 2.0. We’ve overcome an inefficient event model and an
ineffective GUI toolkit. We can now write good-looking applications that will run anywhere.

We’ve also come to the realization that Java is a good language for writing distributed applica-
tions, particularly the server side of things. Java 2 Enterprise Edition, with EJB, JSP and HTML,
have made it possible to build fairly complex apps that require no client resident code.

Some things haven’t worked out, such as the JavaOS and some of the thin-client Java hardware.
But even that has had productive results, pushing vendors toward a Web-based model while con-
tributing to the market competition that eventually drove down the price of PCs to a level that the
average household can afford.

Java Developer’s Journal has also grown through the years. Last year we presented our first Edi-
tor’s Choice Awards to the vendors we thought created the finest products for Java, whether devel-
opment environments, application servers or end products. This year we expanded that with our
Readers’ Choice Awards, in which you, our readers, were able to select your favorite products. We
even spawned a new magazine, XML-Journal. And we launched the JDJ Store, a place where Java
developers can go to get the lowest prices on Java products (come visit us!).

And now it’s time to look into the future. Java continues to improve and expand. I expect Jini to
languish for the next year, then suddenly pick up steam as vendors begin to release products that

support it. Ideally, Sun will make some arrangements with strategic
hardware vendors to include this API as part of their support list.

I also expect to see Java make inroads onto portable devices.
Some version of Java will have to appear on the PalmPilot.
Phones and other tools will converge, and Java will be an
important part of providing key services on these devices.

The rise of the Java Application Server will occur in the
next year. Already we’re seeing vertical products such as

trading engines built on the Java 2 Enterprise Edition speci-
fication. This will continue, as vendors and ISPs have seen

that the EJB approach is easier and more powerful than CORBA
or DCOM.

Expect XML to play an increasing role in your Java future. This
metalanguage is growing by leaps and bounds. Expect to see more parsers, new editors and per-
haps even alternative serialization of classes via XML.

JDJ will also be busy in the future. Plans are underway to create a JDJ Laboratory to test various
products and provide head-to-head comparisons. We expect to have the lab operational early in
2000, and are planning to showcase its power with an application server showdown featuring
some of the best app server products on the market. We’ll also be doing other types of product
reviews in a comparative manner.

I expect that the Y2K lockdown that’s been in place for the past few months will be removed
after we go through January. Most companies are prepared; few will have disruptions. And all of
that energy that’s currently on hold will be spent addressing Web-based development. It will be a
great time to be in the industry.

So as the year, the decade, the century and the millennium all draw to a close, we here at Java
Developer’s Journal wish you and your loved ones a happy, healthy and productive New Year. As
always, thank you for making JDJ the number one Java magazine.

SEAN RHODY, EDITOR-IN-CHIEF

F R O M T H E E D I T O R

AUTHOR BIO
Sean Rhody is the editor-in-chief of Java Developer’s Journal. He is also a principal consultant with Computer Sciences Corporation,
where he specializes in application architecture – particularly distributed systems.

sean@sys-con.com

The Past Through Tomorrow

Soft
Wired
www.java-

messaging

.com/ibus

8 DECEMBER 1999

Java COM

O
ne of the great things about the JavaBeans specification is the
flexibility it affords component developers in how they package
their beans. As a bean developer, all you need is a class with a
no-argument constructor that supports serialization and it’s a
bean. If you follow some simple naming conventions, most inte-
grated development environments (IDEs) can tell enough about

your bean to be able to use it for visual application development. While
this is sufficient for some simple beans, the beans specification also pro-
vides ways for bean developers to explicitly give information that the
IDE can use to assist the application developer in using the component.
This article explores some of the ways that bean developers can make
their components more usable by application developers through the
use of custom property editors and customizers.

JavaBeans can be used by software development tools to allow visual
programming using the beans as reusable components. This can reduce
the amount of code that application developers need to write to make an
application out of beans components. Beans are characterized by their
properties and the events they generate and receive. Most beans have
some properties that the application developer can configure during
application construction to set the initial state of the bean. The Swing
components are examples of beans with many properties that can be
configured during application construction. They have properties like
“backgroundColor” and “font” that control how the component looks
and behaves. The bean developer needs only to follow some simple
naming conventions when naming accessor methods to take advantage
of this flexibility. If the bean has a property named “backgroundColor”, a
development tool will look for a method called “getBackgroundColor”
that can be used to read the state of the property from the bean. If the
bean has a method called “setBackgroundColor”, it will be used to

change the state of the property. Each of these methods is optional. That
is, a bean can have a read-only property or a write-only property. Most
beans are visual user interface components (like the Swing compo-
nents), but beans can also be classes that are not visible on the user
interface.

Development environments use Java introspection to interrogate a
bean for its properties by looking for methods called get<something>
and set<something> unless the property is a boolean; in that case the
read accessor is called is<something>. With this information the IDE can
build a graphical user interface called a customizer that the application
developer can use to manipulate the bean. Often this is good enough.
Simple beans may have properties that are of simple types and whose
names are self-explanatory. Most IDEs include GUI components for Java
primitive types and common classes like java.awt.Color and
java.awt.Font, but if your bean has a property of a type that you defined,
or isn’t included in the IDE’s set of property editors, it will just omit the
property from the bean’s automatically generated customizer. Also, more
complicated beans may have dozens of properties – most of which are
not important to the bean user – or have complicated dependencies that
aren’t visible through introspection. In these cases it would make the
bean more useful if you could provide a simpler customizer that guided
the user in how to configure the bean and helped prevent errors.

While the JavaBeans specification allows for IDEs to create customiz-
ers for beans using introspection, it also allows for bean developers to
provide customizers to be used in place of, or in addition to, the default
customizer. Bean developers have the flexibility to simply provide an
editor for a single property to be used within the default customizer, or
to provide a complete GUI customizer that can replace the default cus-
tomizer altogether.

J D J F E A T U R E

WRITTEN BY WILLIAM WRIGHT

Property Editors
There are several ways to provide a custom property editor to be used

within the default customizer that the IDE generates by introspection.
I’ll explore the simplest here with an example and then move on to a full-
blown customizer.

Let’s make a simple bean that’s a digital clock. Its only important prop-
erty controls whether it displays the time as 12-hour time with an
AM/PM designation or as 24-hour time. I’ll call this boolean property
“twentyFourHourFormat” and when the property is true, the clock will
use 24-hour time; when it’s false, it will use 12-hour AM/PM time. The
code for this bean is in Listing 1.

Beans-aware IDEs have a property editor for the boolean primitive
type; Figure 1 shows the customizer and bean display that the Sun Bean-
Box provides for the Clock bean.

The BeanBox is Sun’s reference implementation of a bean container.
It’s a part of the Beans Development Kit (BDK) and is available at
http://java.sun.com/beans. The BeanBox is not a full-blown IDE, but it’s
a good tool for testing beans, property editors and customizers. In this
case the BeanBox used introspection to generate the customizer panel
that includes not only the twentyFourHourFormat property but also all
of the properties from the bean’s base classes. Notice that the property
editor for the twentyFourHourFormat property is a combo box of the
values true and false. The Introspector also found a property called “run-
ning” because the bean has methods called isRunning and setRunning.
The “running” property should be hidden from the application develop-
er so that the clock runs continuously. I’ll show how to hide this proper-
ty from the application developer later in this article.

The automatically generated customizer isn’t bad, but we can make it
a little more user-friendly. Let’s define a custom property editor that
gives the user more information about what the property does.

All property editors must implement the java.beans.PropertyEditor
interface. The easiest way to create a simple PropertyEditor is to extend the
java.beans.PropertyEditorSupport class that implements java.beans.Prop-
ertyEditor and defines all of the interface’s methods to reasonable defaults.
Then I’ll just need to override the methods that are necessary for the fea-
tures I want to provide.

Instead of “true” and “false,” it would be nice if the application devel-
oper could choose between “12 hour” and “24 hour” as the time format.
I can do that with a custom property editor. If I override the getAsText()
and setAsText() methods from PropertyEditorSupport, I can tell the IDE
that the property can be set and read as a text string. If I also override the
getTags() method, I can tell the IDE what the valid string values are for
this property. The code for the property editor is shown in Listing 2.

Now the IDE can build a customizer that uses the strings that are in the
property editor rather than true and false. But how does the IDE associate the
property editor with the property? I’ll need a BeanInfo class to make that asso-
ciation. A BeanInfo class provides information about a bean that isn’t available
through introspection. It can also be used to override the results of introspec-
tion. BeanInfo classes must implement the java.beans.BeanInfo interface. As
in the case of the PropertyEditor interface, there is a class called
java.beans.SimpleBeanInfo that implements all of the BeanInfo methods with
reasonable defaults. I’ll extend SimpleBeanInfo to define the ClockBeanInfo.

When examining a bean, an IDE looks for the BeanInfo class by
appending “BeanInfo” to the name of the bean class and looking for a
class by that name. If my bean is named mybeans.Clock, an IDE will look
for the class mybeans.ClockBeanInfo that implements the BeanInfo
interface. Ordinarily, a BeanInfo class goes in the same package with the
bean it describes, but it can go in another package. IDEs will also look for
BeanInfo classes in the packages returned by the static method in
java.beans.Introspector called getBeanInfoSearchPath(). You can add
your BeanInfo package to the search path with setBeanInfoSearchPath().

9DECEMBER 1999

Java COM

Thus, if your BeanInfo classes were all in the
package mybeans.beaninfos, you could call
this to tell an IDE about it:

String [] path = {“mybeans.beaninfos”};

Introspector.setBeanInfoSearchPath(path);

If the IDE finds a BeanInfo for a bean, either in
the same package as the bean or in the BeanInfo
search path, it will ask the BeanInfo for informa-
tion about the bean before using introspection.

An IDE uses the getPropertyDescriptors()
method to get information about the bean’s
properties from the BeanInfo class. getProper-
tyDescriptors() returns an array of java.beans.-
PropertyDescriptor objects. PropertyDescrip-
tors define how the property should be dis-
played and edited. PropertyDescriptor and its
superclass FeatureDescriptor also follow the
beans naming convention for get and set
accessors to properties. Table 1 summarizes
the properties of a PropertyDescriptor.

The BeanInfo getAdditionalBeanInfo()
method is used by the IDE to get properties
from the ancestor classes of the bean. It
relieves the BeanInfo class of the responsibility
for creating PropertyDescriptors for all of the
properties of all of the superclasses of the bean.
I’ll include getAdditionalBeanInfo() here so the
inherited Swing properties are also displayed
in the automatically generated customizer. The
code for the ClockBeanInfo class is in Listing 3.
The BeanInfo class can also be used to associ-
ate a set of icons with the bean. IDEs can use
the icons in their palette as a graphical repre-
sentation of the bean. The getIcon() BeanInfo
method takes a request from the IDE for a type
(color or monochrome) and size (16 or 32 pix-
els square) of icon and returns a java.awt.-
Image object if an icon of the requested type is
available. Constants representing the different
icon types are defined in the BeanInfo inter-
face. As we’ll see, different IDEs use different
icon types so it’s a good idea to include a vari-
ety if possible. The getIcon() method is also
listed in Listing 3.

Once the BeanInfo and PropertyEditor classes
are written, I can load them into the BeanBox and

see the results. Notice how the property editor for
the twentyFourHourFormat property now uses
the information from the PropertyDescriptor in
the BeanInfo to make the editor user interface.
The name of the property is now listed as “Time
Format” rather than “twentyFourHourTime” and
the combo box contains “12 Hour” and “24 Hour”
rather than true and false. Because the “running”
property descriptor hidden property was set to
true in ClockBeanInfo.getPropertyDescriptors(),
the property doesn’t appear in the customizer
that the BeanBox generated (see Figure 2)

TABLE 1 PropertyDescriptor properties

Java COM

10 DECEMBER 1999

FIGURE 1 The Clock bean and default customizer

FIGURE 2 The default Customizer with PropertyEditor

PropertyDescriptor Meaning Example
Properties
name The name of the property “twentyFourHourFormat”
displayName The name to be displayed to the application developer “Time Format”
readMethod The method to read the property beanClass.getMethod(“getTwentyFourHourFormat”, boolean)
writeMethod The method to write the property beanClass.getMethod(“isTwentyFourHourFormat”, boolean)
shortDescription Text that describes the purpose of the property “Sets the clock to display either 12-hour time or 24-hour time”
propertyEditorClass The class that is to be used to edit the property mybeans.ClockPropertyEditor.class
bound True if the class fires PropertyChangeEvents

when this property changes
constrained True if the class fires VetoableChangeEvents

when this property changes
expert True if this property should be hidden from novice

application developers
hidden True if this property should be hidden from all

application developers
preferred True if this property should be prominently displayed

to application developers

11DECEMBER 1999

Java COM

ENTERPRISE SOFT
www.enterprisesoft.com

Java COM

12 DECEMBER 1999

Customizers
By adding the BeanInfo and PropertyEditor,

we’ve hopefully made the Clock bean a little eas-
ier to use in an application. I can take this one
step further by asserting more control over the
bean configuration process and define a cus-
tomizer that can replace the default customizer
generated by the IDE. By doing this I can show
the user only the properties that are important
and present the bean state in any way I want.

Like custom property editors, customizers
are also associated with their beans through
the BeanInfo class. The BeanInfo method get-
BeanDescriptor() returns a BeanDescriptor
that contains the bean’s class and the bean’s
customizer class if it exists. An IDE can use the
bean descriptor to find out whether the bean’s
author has provided a customizer that the IDE
can use instead of or in addition to the cus-
tomizer it generates using BeanInfo and intro-
spection. SimpleBeanInfo.getBeanDescriptor()

asserts that there is no customizer, so to assert
that there is one, I’ll override getBeanDescrip-
tor() in ClockBeanInfo in Listing 3.

Now I’ll need to write the customizer. All
beans customizers must implement the
java.beans.Customizer interface and extend
java.awt.Panel. The code for the simple Clock
customizer is in Listing 4.

The IDE gives the customizer a reference to
the to-be-configured object by calling the set-
Object method of the Customizer interface. The
customizer can then synchronize its state with
the object being customized, register as an
event listener, etc. Then, as the application
developer manipulates the customizer GUI, the
bean can be updated immediately. This gives
the application developer immediate feedback
on what the effects are of changing a property.

To view the customizer in the BeanBox, first
select the bean to be customized, then select View
—> Customizer from the menu bar. Figure 3 shows
what the customizer looks like in the BeanBox.

Packaging the Bean
Once the bean, BeanInfo, PropertyEditors

and customizer have been written, they need
to be packaged for loading into an IDE. The
easiest way to load the bean and its associated
classes and images into an IDE is to put them
into a JAR file using a command like this.

jar cvmf manifest.mf

mybeans.jar mybeans*.class mybeans*.gif

The manifest file is an annotated list of the
files that go into the JAR file. A special tag in the
manifest file called “Is JavaBean” identifies the
classes that are JavaBeans. The manifest file for
this example is:

Manifest-Version: 1.0

Name: mybeans/Clock.class

Java-Bean: True

Every IDE loads beans a little differently, but I
can go through a couple of examples here. All of the
examples so far have used the BeanBox that comes
with the Sun Beans Development Kit. Here’s one
way to load the JAR file into the BeanBox:
1. Under the File menu, select LoadJar.
2. Use the file dialog to select the JAR file that con-

tains the beans. The BeanBox loads all of the
beans in the JAR file into the BeanBox palette.

Figure 4 shows what the Clock bean looks
like in the BeanBox palette. Note that it found
the 16x16 color icon and put it in the palette
with the bean class name.

A Real IDE
Borland’s JBuilder uses a little different

method but can load the same JAR file. These
are the steps to load the Clock bean into the
JBuilder 3 palette:
1. Select Tools —> Configure Palette.

2. Under the “Pages” tab, select the palette
page to hold the component. A blank page
called “Other” included in the default palette
is a good place for new beans.

3. Select the “Add From Archive” tab and select
the JAR file containing the bean and related
classes. JBuilder opens the JAR file, reads the
manifest and displays the beans that it found.

4. Select the bean class or classes to be
installed.

5. Select “Install” to load the component.

Figure 5 shows what the component looks
like in JBuilder. It looks like JBuilder preferred
the 32x32 color icon to represent the clock
bean in its palette.

Let’s take a closer look at how JBuilder uses the
Clock bean and its associated classes. If I drop
the Clock from the palette onto a panel, JBuilder
shows the clock in the panel and the Clock is
running. JBuilder also creates a property sheet
customizer containing the properties that I
defined in the BeanInfo getPropertyDescrip-
tors() method and the Swing properties that it
found by using getAdditionalBeanInfo(). The
Clock bean property sheet is shown in Figure 6.

IDEs have a lot of flexibility in how they use
the BeanInfo information. Notice that JBuilder
did use the property editor for the twenty-
FourHourTime property, but used the property
name rather than the display name I set in the
BeanInfo. It did pick up the short description
text from the BeanInfo and used it as the
ToolTip help text (see Figure 7). Cool. JBuilder
also added two entries to the property sheet

FIGURE 3 The Clock Customizer

FIGURE 4 The BeanBox Palette

FIGURE 6 The JBuilder Clock property sheet

FIGURE 5 The JBuilder Palette

continued on page 80

13DECEMBER 1999

Java COM

KL GROUP
www.klgroup.com

Java COM

14 DECEMBER 1999

WRITTEN BY
ALAN WILLIAMSON

Java Is for Life…Not Just for Christmas

W
ell, here we are again, decking the halls with boughs of
holly, fa-la-la-la-la-la-la-la-la, and all that sort of non-
sense.…The time of year when the opportunity to steal a
kiss from the secretary isn’t an actionable offense
(assuming, of course, that you catch her – or him – under
the mistletoe and not just as you’re waiting for the print-
er to finish. So be careful).

S T R A I G H T T A L K I N G

It’s been an exciting year, but I’m
going to leave my reflection article to the
next one, when it’ll be the millennium
and – with any luck – we should all be
here in one piece. As we run up to the
end of the century, I’m hearing reports
that not all the predictions have come
true. Our dear French prophet, Nos-
tradamus, was way off base, unless
world destruction has actually occurred
and someone has neglected to inform us
country boys. News does sometimes
take a while to reach us, so who knows? I
may be writing for a reader base that no
longer exists.

I love Christmas. Such a wonderful
time of year.…A time when you make
those agonizing decisions about who
not to send a Christmas card to.…About
who has really annoyed you enough
during the year to be taken off the list.
Yes, Christmas…a most wonderfully
cynical time of the year. And, in the
words of a great English writer: “Bah,
humbug.”

A Sordid Tale
This month has seen us struggle with

Oracle and Microsoft NT and the sordid
tale will be recounted here in detail. One
of our major clients has many an Oracle
database running on a variety of Solaris
platforms. We’ve written many solutions
to interface and tie these databases
together using Java Servlets. You all
know the woes I’ve had in the past with
JDBC-Oracle drivers and I can happily
report that all our problems had gone
away. The more astute of you will notice
the word had in the previous sentence,
which would suggest that the problem
may have returned. Read on.

We had a spare NT server sitting
around doing not much, and on a whim
I had the bright idea of installing Oracle
on it and using it as a development serv-
er, which would speed up our testing. So

while I installed Oracle, I asked our
client to do a complete export of the
data, and the resulting 400MB file was
transferred up to us. The version of Ora-
cle the export had originated from was
8.0.3 (Solaris), and it was destined to end
up in an 8.0.3 (NT) version. So no imme-
diate problems were expected.

After a bit of buggering around with
table permissions, the file imported with
no errors reported. Excellent. Morale
was high, and we proceeded to hook up
our back-end server software and start
some serious testing. Hah! If it were only
that simple!

Our JDBC driver started throwing out
exceptions immediately. “No more data
to read from socket.” What the hell sort
of error is that? So we checked all our
driver settings, making sure our data-
base URL was correct and pointing to
the right machine. No problems there. I
had this real horrible sinking feeling that
we were about to enter the world of
JDBC-Oracle again. This world is a bit
like the mythical Narnia: once you’ve
entered through that wardrobe, it’s very
hard to get back out.

But it’s a type 4 driver and runs on
Solaris with no problems whatsoever.
For those of you not too familiar with
the types of JDBC drivers, a type 4 is a
pure Java solution, which relies on no
native code. Out of the four types, a type
4 is the most portable since it can run on
any of the virtual machines. I was loath
to even think of taking this route. We
were running our software from a Linux
configuration and even thought for a
split second that this could be the cause
of the error.

As a precaution, I downloaded and
installed the latest JDBC driver. In a
warped sort of way I was thankful it still
didn’t work. I didn’t want to think it was
the JDBC driver, for if it was I could eas-
ily be forgiven for thinking there were
dark forces afoot that deemed I was

never to have an easy time with Oracle
and JDBC.

So what on earth could it be? Well,
back to what is probably the best Web
site in the world for more information.
Deja.com is an archive of the daily post-
ings to the newsgroups and can be
quickly and easily searched using a
diverse range of options. If you’ve never
been there, go – it’ll improve your prob-
lem-solving abilities tenfold. I dutifully
put in the words “No more data to read
from socket ORACLE,” hoping to see at
least one person who had met the same
fate I had. Boy, was I surprised.

Hundreds of posts were made regard-
ing this problem. Hot damn, now this is
the true power of the Internet. I quickly
located the fact that Oracle for NT has
severe problems and I needed to
upgrade to 8.0.5. Surely not. You mean
Oracle is at fault at the core server? Now
this surprised me. I had always been
under the impression that Oracle was
rock solid with version 8.0 and it was just
their drivers that let them down. But
after downloading the update, installing
and converting over our database file,
sure enough, our application burst into
life. Fantastic.

I did some more digging and discov-
ered that Oracle on NT has never been
an exemplary piece of software. Many
people, many problems. Now why is
this? me wonders. I remember reading
an American version of one of the
computer magazines – I can’t remem-
ber which one – but it had an article
that talked up the use of NT in server
environments. It explained why it was
much better than a Linux alternative
and really went to town to sell NT. It
had to be written by a Microsoft
employee. It completely contradicted
every experience I’ve ever had with the
two operating systems. But it put
enough doubt in my head to go off and
do a little reading.

15DECEMBER 1999

Java COM

BLUESKY
www.blue-sky.com

Java COM

16 DECEMBER 1999

After reading through many posts, I can’t really say one way or
another that any one operating system was getting more bugs
than the other. It’s very hard to tell. I can only comment from
my own experience, which I have to say doesn’t put NT
in a very good light at all. For example, this recent inci-
dent with Oracle hasn’t really strengthened Micro-
soft’s case. As much as I’d love to point the finger of
blame at Oracle, I can’t…well, not fully. Their Oracle
8.0.3 is running perfectly on Solaris, so, assuming the
NT version shares a significant amount of common code,
the only difference has to be NT. I also can’t point the fin-
ger of blame at Microsoft, but I think something is afoot
that I’m not fully aware of.

Either way, without the assistance of Deja.com, I’d
still have been struggling to get the bugger working.
It has to be said that documentation on the Oracle
Web site regarding this topic is very thin on the
ground. For a company that’s supporting many
different versions, there should be a logical place
where we can see all the problems. If such a
page exists on the Oracle Web site, please,
someone, e-mail me the URL. I thank you.

Book Review
I love reading books about the history

of our great industry. It’s a continual buzz to read
about people who are still very much active in our
world. I’m getting through many of these company
biographies and one, which I haven’t quite fin-
ished yet, is from Paul Carroll: Big Blues: The Unmaking of
IBM. This is turning out to be a really fascinating read, dis-

covering the ins and outs of one of the biggest companies in
the world.

It contains a great story that Carroll retells. An executive
who has just cost IBM $10 million in a failed deal is

hauled into the office of then CEO/cofounder Tom
Watson. Watson asks the sales executive, “Why do you
think I have asked you here?” The rather worried

salesman responds: “To fire me?” Watson then replies,
“Fire you? I’ve just spent $10 million training you!” This

made me laugh. But if you’re ever interested in what goes on
behind the big blue letters, this is a great insight!

Mailing List
The mailing list is beginning to generate some seri-

ously good threads of conversation. In the last
month we’ve had a number of debates on the future

of Java and whether it should be open sourced or
not. One poster posed the question and we all
answered. Surprisingly, not many supported the
open sourcing of Java, which was good. Person-
ally, I’d suspected a much greater swing of sup-

port, but it was good to hear everyone’s struc-
tured answers about why it should, for the
time being, be left to Sun to manage.

Discussions on what we’d like to see in
Java during the next wave have also taken

place. One topic that comes up time and again is oper-
ator overloading. I must say, I liked this facility in C++,
and understand the apprehension of James Gosling

not to include it in Java. But we hear that it’s seriously being
considered.

If you want to be part of the discussion, send an e-mail to
listserv@listserv.n-ary.com with subscribe straight_talking-l in
the body of the e-mail. From there you’ll get instructions on
how to participate on the list. Thank you all for your continued
posts, and I have to say that I thoroughly enjoy the variety of
topics discussed.

Salute of the Month
This month I’m going to honor not a person but a piece of

equipment that for us here at n-ary has improved the quality
of our lives tenfold. It’s a device I’m sure has helped many oth-
ers in their quest for cleanliness in the kitchen. The device I
refer to, of course, is the humble dishwasher. The person who
invented this beast should be knighted or declared a saint. We
recently took delivery of one for our kitchen, and I tell you it’s
a nice feeling to go and make the coffee without having the
sinking (no pun intended) feeling that you first have to wash a
pile of dirty cups. So, dishwasher, we salute you.

Cool to Be Country?
Last month I told you about my foray into the world of Dolly

Parton. Well, in keeping with the country theme, I was watch-
ing the Country Music Awards and was introduced to the Dixie
Chicks. It was a wonderful tune and I instantly wanted more.
So I went out and bought their latest CD and what a wonder-
ful purchase that turned out to be. So I’m still in my country
mode with no signs of letting up. If anyone has any advice on
how to get out of this world, please let me know…sooner
rather than later!

Until then, I bid you a happy holiday season and look for-
ward to seeing you in the year 2000!

AUTHOR BIO
Alan Williamson is CEO
of n-ary (consulting) Ltd,

the first pure Java
company in the United

Kingdom.The firm, which
specializes solely in Java

at the server side, has
offices in Scotland,

England and Australia.
Alan is the author of two

Java servlet books, and
contributed to the Servlet
API. He has a Web site at

www.n-ary.com.

alan@sys-con.com

S T R A I G H T T A L K I N G

$3999
year/12 issues

JavaDevelopersJournal.com

1800-513-7111
subscribe online for faster service
subscribe@sys-con.com

Certify
Online

www.certifyonline.com

17DECEMBER 1999

Java COM

4TH PATH
www.4thpass.com

Java COM

18 DECEMBER 1999

J D J F E A T U R E

As of V8.i, Oracle developers can now write stored procedures,
functions, packages and triggers in Java instead of PL/SQL (Ora-
cle’s proprietary procedural language), which provides some
appealing options:

• We don’t have to learn a proprietary (and thus limited-use) language
to write stored objects for Oracle databases.

• We can get performance improvements over PL/SQL that make stored
objects much more usable than they’ve been in the past.

• We can write code that’s at least somewhat migratable to other data-
base platforms should we wish to do so.

I’ll provide guidelines and strategies for the effective use of Java within
Oracle databases, and a brief overview of how to write stored procedures,
functions, packages and triggers for Oracle Databases (V8.i) for readers
who aren’t familiar with these new features of Oracle. A basic knowledge
of Java and Oracle database concepts (including SQL and the definitions
of stored procedure, function, trigger and package) is assumed.

Java Stored Procedure Overview
REVIEW OF CAPABILITIES

Stored objects written in Java use JDBC to access Oracle databases the
same way Java programs outside the database do. It’s also common to
embed SQLJ (a preprocessor that inserts generated JDBC code in your
program) within Java stored procedures. The only coding difference with
Java stored procedures is a change in how we initiate a database con-

nection. There are also a couple of utilities that define Java programs to
an Oracle database as well as changes to the CREATE PROCEDURE,
FUNCTION, PACKAGE BODY and TRIGGER statements. If you’re famil-
iar with the capabilities of PL/SQL, stored objects in Java can do any-
thing PL/SQL can do.

ORACLE JVM SPECIFICS
Because of Aurora’s tight integration with the Oracle database kernel,

it isn’t pluggable. No upgrade to Java 1.2 was available at the time of this
writing (though I’d expect one at some point).

LOADJAVA AND DROPJAVA UTILITIES
The two-step process to define Java stored objects is (1) load the Java

class, and (2) expose its methods. Java classes are loaded into the data-
base by either a CREATE JAVA statement or via the loadjava utility, which
is typically executed from an operating system command prompt. In
reality, the loadjava utility issues a CREATE JAVA statement behind the
scene. I find the loadjava utility easier to use.

As an illustration, I’ve written a short class that’ll determine a unique
number for an identifier field of a table. Frequently, in Oracle-based appli-
cations, sequences that generate unique numbers are used to generate a
unique number for use as a key field in a table. Unfortunately, the sequence
that generates the number has no formal association with the field in the
table using the number. This means programmers have to check for the
possibility that the generated number isn’t unique. My program centralizes
this logic in one class so no one else has to code it (see Listing 1).

WRITTEN BY DEREK C.ASHMORE

19DECEMBER 1999

Java COM

Java classes can be loaded as source, class or JAR files. Java source is
compiled by the JVM in the Oracle database engine. The ability to load
class and JAR files is nice because we can conceivably load purchased
components (provided they aren’t GUI components) into the database.
An example of a loadjava statement follows:

loadjava -u derek/hello@venus:1521:ORA81a -thin -v -f -r -t

OracleProcs.java

The –v option produces detailed messages about the steps loadjava is
going through to compile and load my Java class. The –f forces the load-
ing of this Java class even though it’s already present, which means I
don’t have to issue a dropjava command first. The –u option specifies the
connection string in thin-driver format for the database in which this
class is being loaded. The –r option designates that all external refer-
ences are to be resolved at load-time instead of runtime. The –t option
designates that the “thin” JDBC drivers are to be used for any database
communication during the load process. The last argument specifies my
Java source.

Similarly, I can remove my class with the dropjava utility. The com-
mand arguments are similar. The –v and –u options mean the same thing
as with the loadjava utility. An example follows:

dropjava -u derek/hello@venus:1521:ORA81a -v -t OracleProcs

Once the classes have been loaded, we must expose individual meth-
ods with CREATE PROCEDURE, FUNCTION and PACKAGE BODY state-
ments. It should be noted that the Java language libraries, JDBC libraries
and ORB class libraries are already present in the database. No need to
load them again.

CREATE PROCEDURE, FUNCTION, PACKAGE BODY AND TRIGGER STATEMENTS
While the loadjava utility will associate Java classes with the database,

none of the methods associated with those classes are callable until you
register them. Methods of Java classes are registered (or “wrapped”) by
issuing CREATE PROCEDURE, FUNCTION or PACKAGE BODY state-
ments. After registration, they can be called in the same manner as
PL/SQL procedures, functions and packages.

An example of a CREATE FUNCTION statement that registers a Java
method is presented below:

create or replace function getID(

TableName varchar2,

ColumnName varchar2,

SequenceName varchar2)

return number

as language java

name 'OracleProcs.getUniqueIdentifier(java.lang.String,

java.lang.String, java.lang.String) return double';

/

The “AS LANGUAGE JAVA” clause also works with CREATE PROCE-
DURE and CREATE PACKAGE BODY statements.

Note: You must fully qualify the argument passed if it isn’t a native Java
data type. As many of you know, strings aren’t a native data type in the
Java language. The definition of a string is obtained from the Java.lang
import library. Hence, we must fully qualify the object type being passed.

Surprisingly, only a few alterations are needed to define a Java pro-
gram as a stored object under V8.i. All Java stored objects use JDBC for
database access.

JAVA REQUIREMENTS
All Java methods executed from a database connection must be

declared as static. This makes sense as these methods are essentially
being invoked from outside the JVM, and hence must be runnable (as

method main always is). Once invoked, methods can instantiate nonsta-
tic objects and use them, but these object allocations disappear after the
method completes. If you wish to retain information within the Java class
between method calls, you must store them in a static-defined variable.

Another major difference: within a Java stored object we initiate a
JDBC connection differently. With stored procedures we’ll typically use
the connection created by the process that invoked the stored procedure
as opposed to opening up a separate connection. An example of how to
specify the default connection is:

Connection dbConnect = new OracleDriver().defaultConnection();

Issues to Be Considered When Introducing Java Stored Procedures
Consider the following issues before deploying Java stored procedures

in your organization:
• Platform compatibility requirements for your applications
• Developer training
• System management and source control
• Software licensing
• Application performance

You need to identify the target Oracle database platform for your
applications before migrating stored objects to Java. Java stored objects
are new with V8.i; they’re not supported in V8.0.5 and earlier. Applica-
tions that need to support earlier versions of Oracle software won’t be
able to migrate immediately.

As Java stored procedures use standard JDBC to issue SQL statements,
Java is easier to migrate to other database platforms should that become
necessary. I have a number of clients who would like to migrate an appli-
cation from one database platform to another but can’t because stored
procedures are written in a proprietary, nonportable language. Stored
procedures written in Java have a significant chance of being portable to
a non-Oracle platform without a complete rewrite.

Developer training is usually a significant issue when adopting new
technologies. For shops already developing in Java, introducing Java
stored objects would be easy and inexpensive. No additional training
would be necessary. For shops that don’t use Java, training costs could be
significant, but comparable to other languages. In addition, database
administrators would also have to learn Java at a basic level in order to
provide developer support.

Many Oracle environments use object ownership to distinguish
between environments. It’s common to define testing tables and index-
es using one user ID and to create a development environment using
another. For example, user DEV might own our development tables,
indexes, and so on, while user TEST owns our testing environment in the
same database. Oracle’s JVM, like other JVMs, doesn’t have a native own-
ership/object security model. Only one version of a class can be present
in Oracle’s JVM, so I can’t have a development and testing version of the
same class in a database. These environments must now be separated
into different databases. Robust source control procedures are needed
with Java stored procedures to avoid conflicts.

There’s a software licensing issue with using Java stored procedures. At
the time of this writing, Oracle’s JVM was licensed separately and has its
own cost component. From a strictly technical point of view, writing
stored procedures in Java instead of PL/SQL has many advantages. How-
ever, the cost of Oracle’s JVM may not be worth the benefits for some
applications.

Performance Issues
Java stored procedures are much faster than PL/SQL. My tests indicat-

ed that Java stored procedures that do ordinary SQL statements, such as
selects, updates, inserts and deletes, can be improved 20–40% if written
in Java instead of PL/SQL. Additionally, procedures written in Java that
don’t issue SQL statements execute nine or 10 times faster than PL/SQL.

Java COM

20 DECEMBER 1999

Java outperformed PL/SQL by 20–40% for SQL operations by allowing
more flexible array processing and write batching. To get a simple SQL
operation test, I wrote a Java and PL/SQL procedure to select and loop
through all object names in the DBA_OBJECTS system view. For those
that are interested, DBA_OBJECTS identified all objects existing in an
Oracle database. At the time of my test there were 11,668 objects in my
database.

Out of curiosity, I wrote the method to take the array size as an argu-
ment. Oracle allows array processing on select statements; array pro-
cessing allows Oracle to retrieve rows in batches (e.g., 100 at a time) for
efficiency. PL/SQL doesn’t support array processing. Oracle’s JDBC dri-
vers set the array size to 10 by default. The Java source for this method
can be found in Listing 2. The PL/SQL source for this method can be
found in Listing 3. My results are in Listing 4.

The results show that by default (array size of 10) Java was about 18%
faster than PL/SQL. However, if you employ array processing (which is
easy to do with Java), you can get significant performance improvements
for read operations.

As an aside, there are diminishing returns to increasing the array size
– performance improves more if the array size is increased from 1 to 10
than from 100 to 200. To set the array size, use the setDefaultRowPrefetch
method of the OracleConnection class. An example of how to do this is
contained in Listing 1.

Strategies for Effectively Using Java Stored Procedures
Once you’ve decided to write stored procedures in Java instead of Ora-

cle’s native PL/SQL, you need to decide which Java classes should be
deployed as stored procedures and which should be deployed normally
(as part of an application, applet, CORBA service, etc.). The issues to
think about when deciding whether to use Java stored procedures are:
• JVM currency
• Application design
• Performance

Oracle’s JVM, Aurora, is currently in V1.1.6 and not pluggable. Java
deployed as a stored procedure won’t have access to features in later
releases of the JVM (e.g., V1.2.x). While I’d expect Oracle to keep Aurora
relatively current, it’ll never be at the same level as the latest and great-
est Java release.

From an application-design point of view, the fact that all methods
called from a database connection need to be declared “static” tends to
limit the role of Aurora to that of a “function loader.” A class in this con-
text is just an arbitrary collection of methods. While you can instantiate
and use classes within a method call, any memory you allocate won’t be
available for future method calls. If you wish to retain information for
future method calls, you must store this information in a statically

defined and allocated variable. With this restriction it’s hard to keep a
purely object-oriented design for this section of the application.

Usage Guidelines
In my experience, Java code deployed as a normal application outside

Aurora performs four to eight times faster than Java deployed as a stored
procedure. Because of the various performance issues involved, I tend to
deploy Java code outside the database as part of an application, applet,
servlet, CORBA service, and so on. However, I do use Java stored proce-
dures to implement the following items:
• Database triggers
• Custom SQL column functions

Database triggers execute code when INSERT, UPDATE or DELETE
statements are issued. They’re defined on a per-table basis. Triggers are
used to enforce business rules that the database can’t enforce via refer-
ential integrity constraints. For instance, I use triggers to execute the
unique identifier generator that was reviewed in the first section of the
article. An example of such a trigger definition follows:

create or replace trigger BEER_TR

before insert on beer

for each row

when (new.beer_id is null)

begin

:new.beer_id :=

getID('beer',

'beer_id',

'beer_seq');

end;

/

Another place that Java stored procedures can be used effectively is in
custom-column functions. Most developers are familiar with COUNT,
SUM, AVERAGE and other native column functions that most databases
provide. Using Oracle, it’s possible to write custom column functions.
I’ve used it in the past to format numbers (such as 999) into a currency
format (such as $999.00).

Note: As Oracle Corporation is constantly tweaking its products, my
usage guidelines for Java stored procedures may change for future ver-
sions of Oracle.

AUTHOR BIO
Derek Ashmore is the senior vice president of development for Delta Vortex Technologies, a Chicago-based consulting
firm. He has designed, implemented and managed Oracle-based projects of many different types and sizes.

dashmore@dvt.com

//Title: Utility Stored Procedures
//Version:
//Copyright: Copyright (c) 1999
//Author: Derek C. Ashmore
//Company: Delta Vortex Technologies
//Description: Utilities which are callable
// within the Oracle JVM

import java.lang.*;
import java.sql.*;
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class OracleProcs {

private static OracleConnection
currentConnection = null;

private static OracleConnection get-
Connection(){

return currentConnection;
}

private static void setConnection(
OracleConnection oracleConnection)

throws SQLException {
currentConnection = oracleConnection;
currentConnection.setDefaultRow-
Prefetch(100);
currentConnection.setDefaultExe-
cuteBatch(20);
currentConnection.setAutoCommit
(false);

}

private static void setDefaultConnection()
throws SQLException {

setConnection((OracleConnection)
new OracleDriver().defaultCon-
nection());

}

public static double getUniqueIdenti-fier(
String tableName,
String columnName,
String sequenceName)
throws SQLException {
double uniqueID = 0;
boolean idFound = false;
OracleResultSet nextvalResults = null;
OracleResultSet existResults = null;

if (currentConnection == null)
setDefaultConnection();

// Select of sequence value
String SQLStatement = "select " +

sequenceName.toUpperCase() +
".nextval from dual";

OraclePreparedStatement nextvalStmt =
(OraclePreparedStatement)

currentConnection.prepareState-
ment(SQLStatement);

Listing 1

21DECEMBER 1999

Java COM

SIC CORPORATION
www.access21.co.kr

Java COM

22 DECEMBER 1999

// Verification of non-existence
SQLStatement = "select count(*) from "

+ tableName.toUpperCase() +
" where " + columnName.toUpper-
Case() +
" = ? and rownum <= 1";
OraclePreparedStatement existStmt =

(OraclePreparedStatement)
currentConnection.prepareState-
ment(SQLStatement);

// Find next unused value
while (!idFound) {

nextvalResults = (OracleResultSet)
nextvalStmt.executeQuery();

nextvalResults.next();
uniqueID = nextvalResults.get
Double(1);

existStmt.setDouble(1,
uniqueID);
existResults = (OracleResult
Set)

existStmt.executeQuery();
existResults.next();

if (existResults.getInt(1) == 0)
idFound = true;

nextvalResults.close();
existResults.close();
}

nextvalStmt.close();
existStmt.close();

return uniqueID;
}

}

import java.lang.*;
import java.sql.*;
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class SqlTester {

private static Connection nullConnect;

private static Connection getConnection
(int arraySize) {

try {
Connection conn = new
OracleDriver().defaultConnection();

((OracleConnection)conn).setDefault-
RowPrefetch

(arraySize);
return conn;
}
catch (SQLException sqlError) {
System.out.println("This didn't
work!");
return nullConnect;
}

}
private static Connection getConnec-
tion() {

return getConnection(1);
}

public static int performReadTest(int
arraySize) {

String objectName;
int objectCount = 0;

try {
Connection DBConnect =
getConnection(arraySize);
Statement sqlStmt = DBConnect.create-
Statement();
String sql = "select object_name from
dba_objects";
ResultSet dbResults = sqlStmt.execute-

Query(sql);
while (dbResults.next()) {

objectName = dbResults.getString(1);
objectCount = objectCount + 1;

}
dbResults.close();
sqlStmt.close();
}
catch (SQLException sqlError) {
System.out.println("We errored!");
}
return objectCount;

}
public static int performReadTest()
{
return performReadTest(1);

}
}

create or replace function readtestplsql
return number is
cursor OBJ_CSR is

select object_name from dba_objects;
H_OBJ_NAME dba_objects.object_name%type;
NBR_OBJECTS number := 0;

begin
open OBJ_CSR;
fetch OBJ_CSR into H_OBJ_NAME;
while (OBJ_CSR%found) loop

fetch OBJ_CSR into H_OBJ_NAME;
NBR_OBJECTS := NBR_OBJECTS + 1;

end loop;
return NBR_OBJECTS;

end;
/

SQL> select readtestplsql from dual;

READTESTPLSQL

11668

Elapsed: 00:00:03.40

SQL> select readtestjava(1) from dual;

READTESTJAVA(1)

11668

Elapsed: 00:00:10.29

SQL> select readtestjava(10) from dual;

READTESTJAVA(10)

11668

Elapsed: 00:00:02.78

SQL> select readtestjava(50) from dual;

READTESTJAVA(50)

11668

Elapsed: 00:00:02.22

SQL> select readtestjava(100) from dual;

READTESTJAVA(100)

11668

Elapsed: 00:00:02.20

SQL> select readtestjava(200) from dual;

READTESTJAVA(200)

11668

Elapsed: 00:00:02.14

public class Tester {

public static void counter(int inputVal-
ue) {

int count = 0;
while (count++ <= inputValue);
}

public static int timeCounter(int input-
Value) {

int timeElapsed;
long timeMarking = System.current-
TimeMillis();
counter(inputValue);
timeElapsed = (int) (System.current-
TimeMillis()

- timeMarking);
return timeElapsed;
}

public static void main (String argv[])
{

Integer tempInteger = new
Integer(argv[0]);
int nbrIterations =
tempInteger.intValue();
long timeMarking = System.current-
TimeMillis();

counter(nbrIterations);
System.out.println (System.current-
TimeMillis()

- timeMarking);
}

}
SQL> select timecounterjava(10000)

from dual;
TIMECOUNTERJAVA(10000)

4
SQL> select timecounterjava(100000) from
dual;
TIMECOUNTERJAVA(100000)

42
SQL> select timecounterjava(1000000)
from dual;
TIMECOUNTERJAVA(1000000)

420

Java (Outside Oracle JVM) with JIT
enabled
->java derek 10000
1
->java derek 100000
6
->java derek 1000000
59
Java (Outside Oracle JVM) with JIT dis-
abled
->java derek 10000
2
->java derek 100000
27
->java derek 1000000
267

Listing 4

Listing 3

Listing 2

23DECEMBER 1999

Java COM

PRAMATI
www.pramati.com/j2ee.htm

WRITTEN BY
JON SIEGEL

Santa Claus Is a CORBA Object
C

ORBA – the Common Object Request Broker Architecture – is an open, vendor-independent standard
for software interoperability based on object technology. You’ve used CORBA even if you haven’t heard
of it by name:

• It’s the architecture of many of the best-scaling transaction processing systems.
• Virtually every application server on the market exposes CORBA interfaces.
• It’s the basis of Enterprise JavaBeans interoperability.
• It’s used to program many of the largest consumer e-commerce sites on the Web.

C O R B A C O R N E R

Java COM

24 DECEMBER 1999

CORBA from Both Sides: Client and Server
Applications’ use of CORBA objects fol-

lows a number of different patterns,
depending on what their objects represent
or what they do. In this article we’ll con-
centrate on persistent objects, objects that
represent something long-lived in the real
world – an account at a bank or brokerage
house, or a tank in a military simulation,
or the shopping carts in your e-commerce
Web site. Once it’s created an object
instance and holds its object reference (a
token that represents the object’s address),
a CORBA client can assume that the par-
ticular object instance continues to exist,
maintaining its state all the while, and the
reference remains valid until the client (or
some authorized agent) explicitly destroys
the object. Whenever it wants, the client
can make an invocation using the refer-
ence and the answer will come winging
its way back across the network.

This model is great for the client
(and results in an architecture with
many advantages): the client’s only
interface to CORBA is the set of func-
tional operations it invokes on an
object; no activation, deactivation or
storage operations complicate its life.
When it wants to make an invoca-
tion, it just goes ahead and does it.
When it doesn’t…it doesn’t. If it wants, a
client can hold onto an object reference
for years without invoking it. Then,
whenever it wants, it can send an invoca-
tion and expect that the object will be
there to respond and will be in the same
state in which it was left by the client’s
previous invocation – assuming that the
object isn’t shared with any other clients
and hasn’t been destroyed. Destruction
of an object is irrevocable – once de-
stroyed, it’s totally gone and its object
reference will never work again. In this
article we’ll discuss activation and deac-
tivation, which are very different from
creation and destruction. (If you’re inter-

ested, we’ll discuss creation and destruc-
tion of objects in a separate article.)

The model appears less efficient on
the server side, however: Do we really
have to keep all of our CORBA objects
active, at least the persistent ones, on the
off-chance that a client will send us an
invocation at some random time? Sup-
pose we have 10 million customers, each
with his or her own shopping cart object,
but only 2,000 of them are shopping now.
We’d be overjoyed if the other 9 million-
plus customers suddenly came back and
started to shop all at once. But this is
pretty unlikely, and we don’t have enough
computing power to run all 10 million
carts at once anyhow. What can we do?

CORBA and its server-side mecha-
nisms (known to the CORBA literati as
the POA) deal with this situation by dis-
tinguishing the concept of CORBA
object – the client’s concept of an object
that runs continuously from creation to
destruction, maintaining its state all the
while – from the concept of servant – a
piece of running code that services an
invocation. In the CORBA server-side
model, object references are mapped to

running code dynamically when needed
– sometimes only when an invocation
comes in, although there are other pat-
terns as well. When an invocation com-
pletes, the resources it used can be freed
to become available for whatever the
server needs to do next. What’s true is
that an object is always available; what’s
not true is that it’s always running.

This concept is necessary for scalability
– the ability of a CORBA server to handle
requests from millions of clients, using a
reasonable number of computers. Howev-
er, we’ve found that this concept is confus-
ing or disconcerting to many when they
hear about it for the first time. Here’s a
short story that illustrates, by analogy, the
difference between object and servant,
and demonstrates that it’s perfectly possi-
ble for the client to cling to its concept of
“CORBA object running all the time, wait-

ing for me to invoke it” while the serv-
er allocates a servant for it only when

an invocation needs to be serviced.

The Story
My younger son (who plays the role

of the CORBA client in this story)
believes in Santa Claus. Santa Claus is a
fat and jolly old man who wears a red
coat and pants trimmed with white fur,
and travels in a sleigh pulled by eight or
nine reindeer (depending on the weath-
er), delivering toys to children around
the world by jumping down chimneys
and putting the toys into stockings hang-
ing from the mantle. For a few days after
Christmas, Santa recovers from this
effort by soaking his feet in a hot bathtub
and drinking hot chocolate. He spends
the rest of the year making lists and col-
lecting toys for the next Christmas. (This
is the North American view of Santa
Claus and the one we’ll use in this story;
if you’re reading this article in another
country with another view, please adopt
our version for the sake of the analogy.

This article is based on the book CORBA 3 Fundamentals and Programming, written and edited by Jon Siegel and published
by John Wiley and Sons, Inc. © 1999 by Object Management Group.

25DECEMBER 1999

Java COM

SYBASE
www.sybase.com

We know that in Finland, for example,
Father Christmas walks through the
front door and hands presents directly to
the children. If Father Christmas is also a
CORBA object, his encapsulation
boundary is very different from the one
we’re about to describe for Santa Claus!)

The Santa Claus CORBA object that my
son believes in supports a single interface
with a single, well-defined operation,
GetPresents. Here’s the invocation:
• Wait until December 24, in the

evening. Otherwise the invocation fails
and returns the WrongNight exception.

• Find a stocking, preferably a very
large one with your name on it, and
hang it from the mantle above the
fireplace.

• Fill a glass with milk, and set it on the
hearth beneath the stocking.

• Cover a small plate with cookies and
set it next to the glass of milk.

• Optionally, put a note requesting spe-
cific toys next to the milk and cookies.
(The milk, cookies and note are input
parameters.)

• Go upstairs to bed, and go to sleep.

Going to sleep is very important since
it defines the encapsulation boundary,
one of the key concepts in object orien-
tation. Clients are not allowed to peek
beyond this boundary: an object’s inter-
face is defined on it, and once the invo-
cation has been delivered to it the invo-
cation is in the realm of the implemen-
tation. In object orientation one reason
for encapsulation is to enable substi-
tutable implementations. Fortunately,
encapsulation also enables scalability,
as we’ll see shortly. For the Santa Claus
object, encapsulation is the only thing
that allows the invocation to work at all.

But this invocation isn’t going to work
if we rely on the client’s concept of
CORBA Santa to fulfill it. Instead, we’ll
use the POA concept of servant – that is,
some resource that gets activated and
configured when needed, services a sin-
gle invocation and is then released. Par-
ents around the world will appreciate
this next concept: in this story my wife
and I play the role of servants. (Okay, at
least in the POA sense!) Here’s how the
Santa invocation executes at our house:
• After son completes invocation, includ-

ing going upstairs to bed, Mom and Dad
stay up and wrap various non-Santa
presents until we are sure that encapsu-
lation requirements have been met.

• Mom fetches bag with various small
gifts, and stashes them in stocking.
New England tradition requires an
orange in the toe, and family tradition
requires a stuffed animal reaching out
from the top (even though Dad thinks
son is much too old for this).

• Dad takes the glass of milk, pours it
back into the bottle, fills the glass up
with eggnog and rum, grates fresh nut-
meg onto the top and drinks it down.

• While drinking the eggnog, Dad and
Mom may eat a cookie or two. (Mom
doesn’t like eggnog.) Most of the
cookies get put back into the box. Part
of one gets crumbled onto the plate,
which remains on the hearth.

• Dad rinses the glass with milk to cover
up the smell of the eggnog and rum,
and places it back on the hearth next
to the plate of cookie crumbs.

• Dad helps Mom put the last of the
toys into the stocking and hang it
back up on the mantle.

• Dad and Mom clean up the mess left
over from present wrapping and all,
and go to sleep.

In the morning son awakens and runs
downstairs. Seeing the stocking full of
toys and the empty glass and plate, he
exclaims “Wow – look at all the toys.
Santa Claus must be real – he left all
these toys, and drank the milk and ate
the cookies!” And from his point of view
this is true: CORBA Santa accepted the
input parameters (milk, cookies, option-
al note) and delivered the expected
return value (toys). Son’s point of view is
undisturbed in spite of its conflicts with
the reality of the implementation hid-
den beneath the encapsulation layer.

What Have We Learned?
Let’s go over the CORBA lessons from

this story.
1. Client and server can have totally dif-

ferent viewpoints of the object imple-
mentation, but as long as invocations
get serviced according to the agreed-
upon definition of the interface syn-
tax and semantics, this inconsistency
doesn’t matter.

In the story, son thinks that Santa is
real and always exists, as we described
at the start. In reality, the Santa Claus
servant comes into being for only a
few minutes a year – on Christmas
Eve, when it’s needed.

In CORBA the client holds an object
reference and acts as if the object
always exists, making an invocation
anytime it wants and assuming that
the object will maintain its state from
one invocation to the next regardless
of the time that elapses between invo-
cations. In reality, in POA-based sys-
tems, computing resources may not
be allocated for an object until an
invocation comes in and may be freed
as soon as the invocation has com-
pleted. State is maintained on persis-
tent storage between invocations,

loaded on activation and stored again
with any changes on completion.

2. There’s a lesson here on scalability as
well: the story about the jolly fat guy in
the red suit may be charming, but as
an implementation architecture it just
doesn’t scale. Too many kids need
presents on the same night for any one
person to distribute them all, especial-
ly a fat old guy who obviously doesn’t
keep in shape during his off-season,
and the year between Christmases is
too long for such a resource (even out
of shape) to sit around unused. The
POA-based implementation, however,
doesn’t have either of these problems:
every household (well, almost) has a
resource that can play the role of Santa
Servant on one night a year, so there’s
no problem scaling to any number of
households. And the resource is flexi-
ble enough to play other servant roles
during the rest of the year, whenever
the household POA requires it.

The object-oriented principle that
enables this is encapsulation: the imple-
mentation is encapsulated beneath a
boundary that the client is not allowed to
penetrate. It’s been common to suggest
that implementation details such as algo-
rithm and coding reside on the far side of
this boundary and may change unbe-
knownst to the client. With the POA,
CORBA now allows a resource allocation
infrastructure – which may be massive,
supporting a huge enterprise application
or a worldwide e-commerce shopping
site – to lurk beneath this boundary.

The CORBA Component Model, the
newest piece of CORBA 3, defines a
standard server-side architecture based
on the POA with an easier-to-program
environment that’s integrated with
Enterprise JavaBeans. It has all of the
architectural advantages we described
in the foregoing short story.

Where to Learn More
The CORBA standard is written and

maintained by the members of the non-
profit Object Management Group (OMG);
all of the group’s standards are available
from OMG’s Web site (www.omg.org) free
of charge. Products implementing the
standard are available from more than 70
sources ranging from most of the best-
known companies in the computer
industry to small independents, R&D labs
and academic institutions. For more
information visit the Web site at the URL
above, pick up a copy of my book, CORBA
3 Fundamentals and Programming, or
send an e-mail to info@omg.org.

AUTHOR BIO
Jon Siegel, Object

Management Group’s
director of technology

transfer, presents tutorials,
seminars and company

briefings around the
world. He has extensive

experience in distributed
computing, OO software

development and
geophysical computing.

Jon holds a Ph.D. in
theoretical physical

chemistry from Boston
University. siegel@omg.org

C O R B A C O R N E R

Java COM

26 DECEMBER 1999

27DECEMBER 1999

Java COM

SEQUE
www.segue.com/ads/corba

Q:
A:

Q:
A: Q:

A:

S Y S - C O N R A D I O

Q:
A:

Q:
A:

Q:
A:

JDJ: Tell us a little bit about Progress
Software, and then move into the
Java Internet products if you would.
Kassabgi: Progress Software is a large
software company. We had revenues last
year of $280 million as a publicly traded
company. Basically, we sell the number
one embedded database, the Progress
Database. We have consistently been a
favorite among the value-added reseller
community, people that basically sell
packaged applications built on top of our
technology, which as an ensemble sold
some $1.5 billion worth of software pack-
ages last year alone. The Apptivity product
comes from the Apptivity Product Unit of
Progress Software, which has been in
place since early 1997.

Apptivity 3.1, released in July, provides
significant movement, continued move-
ment, into the world of open platform
application servers, the productive envi-
ronment for the development and deploy-
ment of business applications using the
Web and open standards, which include
Java, CORBA, EJB, IIOP and so on.

SonicMQ, to be released later this
month, provides a Java Messaging Server
that allows developers to create distrib-
uted applications using the JMS standard.
The SonicMQ product provides such valu-
able features as publish/subscribe, point-
to-point communication, message transac-
tions and queuing.

JDJ: You said a magic word there. A
lot of people were talking about
application servers at JavaOne. A
ton of them are out there. Somebody
asked how many application servers
he had to have running on his server
to do everything he wants. What
sets Apptivity apart from other
application servers?
Kassabgi: Clearly this is a tremendous
following for the EJB standard, which is
what many of the application servers tend
to focus on. So, yes, there are many AP

servers. The clear differentiation is perfor-
mance, number one; number two is the
feature functionality, the robustness and
productivity with which feature functionali-
ty has been put forward; and three – I
think a differentiator – is the kinds of cus-
tomers and reference accounts and appli-
cations that have been deployed with a
given application server product. A
prospect should look at all three of those
things. I’d actually add a fourth that is very
important: the type of vendor putting the
application server forward – is it a start-up
company whose future is oftentimes
unknown? Is it a platform vendor – for
example, a large hardware vendor? That
kind of company may have a unique style
in putting forward, let’s say, a softer prod-
uct. Or is it a vendor like Progress Soft-
ware that for the past 15-plus years has
been doing nothing but providing produc-
tive environments for developers?

JDJ: What sets SonicMQ apart from
other messaging servers?
Kassabgi: SonicMQ is the first JMS server
available from an established software
vendor. We see other vendors shipping
JMS implementations over the next 6–9
months and look forward to competing
against them along the lines of product
features, performance and scalability. In
addition to these competitive stances, we
also believe we have the best business
acumen for working with ISVs and ASPs
who seek to embed the JMS technology
within their systems.

JDJ: You mentioned performance.
What are some of the characteristics
of Apptivity and SonicMQ perfor-
mance?
Kassabgi: I think it’s essential because if
you have an AP server and it doesn’t
scale, it doesn’t perform, then you don’t
have a product that has inherent value
beyond a demo or an initial review by the
developer. I’ll let the unbiased third-party
DocuLabs benchmark speak for itself. We
were far and away the best-performing AP
server in the list of AP servers at JavaOne
– you know, the AP servers that used the

Java open platform standard.…The next
best AP server behind us was less than
half the transactions per minute.

With SonicMQ we intend to outper-
form all other JMS implementations as
they appear on the market. Of great
importance is the benchmark of messages
per second, particularly under heavy load
and with transactional or guaranteed mes-
saging requirements.

JDJ: What kind of developers are out
there using Apptivity and in what way?
Kassabgi: Developers, both IT teams and
people, ISVs, that are building applications,
and then people in general who have stan-
dardized on the Java platform and want to
build NT or business applications with sig-
nificant business logic on the server with
Enterprise JavaBeans as the business logic
components. You have the flexibility of
both HTML client type as well as Java client
type, the use of XML as the data exchange
between functions and between servers.
You have developers that have made those
kinds of choices and have standardized on
Java and want to build an application for
internal use or for resale and want to be
able to rely on a vendor like Progress Soft-
ware to provide that kind of infrastructure
over time. Clearly, those developers are
looking for something that’s proven to per-
form and scale because the application is
going to have to handle a large number of
users and a large level of throughput once
it’s deployed.

The secret is understanding what
makes the application successful at
deployment. While what a developer
wants at development time may be evi-
dent, what’s far more important is what
the vendor can actually provide in facilitat-
ing the deployment and making it suc-
cessful. And I think the benchmarks show
a very real glimpse of what happens at
deployment and what kind of perfor-
mance one can expect to have.

JDJ: Can you be a little more specific
about who some of those customers
are, and something that our [read-
ers] might be able to go check out?

Kassabgi: Some of these are prominent
on our Web site with some success sto-
ries. The number one Web portal in the
world, Yahoo!, uses Apptivity. They use an
Apptivity application to manage all their
Web advertising on the portal. That is a
success story that the listeners can look at
on the Web site Apptivity.com. Also, Chica-
go Mercantile Exchange, which is basically
a who’s-who in commodities trading, uses
Apptivity to do commodity trading among
its member firms. Futures Online in Chica-
go has created a similar kind of system
with Apptivity. AT&T Calling Card Division
in Jacksonville, Florida, uses Apptivity to
process calling card transactions. That’s a
short list of very notable customers. [Peo-
ple], again, can go to the Web site and
find out more about these. Keep in mind
that to have a reference account means it
must be deployed and it must be success-
ful.

JDJ: What is the vision for the prod-
ucts moving forward?
Kassabgi: That’s an important part. The
vendor needs to provide the best possible
product today, and then the vision, mov-
ing forward, so that its customers can be
carried along and get the benefits from
that. The vision of the product is to move
further into the capabilities of the Enter-
prise JavaBean specification and to do so
in a manner that allows us to continue
having the scalability and performance
that can lead the market. It’s one thing to
say that you’d support an element of the
EJB specification for the sake of support-
ing it. It’s another to say that you’d sup-
port it in a manner that allows you to
basically perform and scale to the highest
degree possible. It’s our desire therefore
to continue going further in the imple-
mentation of the Enterprise JavaBean
specification along those lines.

In addition to that, we regard Java
messaging service, JMS, as extremely
important for distributor applications and
for applications where data is being dealt
with in an intercompany or intracompany
fashion, messages basically being the lin-
gua franca of many of tomorrow’s Web

GEORGE KASSABGI VICE PRESIDENT OF MARKETING
APPTIVITY PRODUCT UNIT, PROGRESS SOFTWARE

SYS-CON Radio Interview

Java COM

28 DECEMBER 1999

29DECEMBER 1999

Java COM

OBJECT SWITCH
www.objectswitch.com/idc35/

S Y S - C O N R A D I O

Q:
A: Q:

A:

applications. So we’re adding full JMS
capabilities to the product in the not too
distant future as well as continuing to
enhance the ability to use XML as the
actual language for the data exchange that

would happen via messaging and then, in
addition to all that, continuing to work to
make the product not only very produc-
tive in its current state – namely, an inte-
grated application environment state –
but also make it very productive for devel-
opers that would be using other IDEs or
tools with Java. And so, continued empha-
sis on productivity as well.

We see the vision as being something
that tackles the demanding requirements
of the developer that has chosen open
platforms and the Java platform,
demands working scalable performance
implementations of EJB and JMS,
demands that XML be threaded through-
out the product in a cohesive manner,
be able to use XML as the data exchange
throughout and wants all of that in a
concise package where there are few
restrictions, few limitations, and where

deployment results in a successful
deployed business application with
potentially hundreds – thousands – of
end users and tens of thousands of
transactions per second.

JDJ: If I want my company to have
their Web site perform with transac-
tions at a speed and consistency that
a Yahoo would but I can’t afford it,
then I’m out of the picture. Can you
tell us how the software is bundled
and what the price correlation is?
Kassabgi: We’ve had the same pricing
model for quite some time. It’s not chang-
ing as a result of 3.1. The pricing model is
very straightforward, and I think you’ll find
most if not all AP servers are very similar,
taking a similar stance, which is the devel-
oper copies are $995 per developer seat.
That allows the developer to develop an
application and also to test-deploy it on
his or her system.

Then there’s a deployment pricing –
when you deploy a business application
built with Apptivity there’s a deployment
license. The prices start at $10,000 per

CPU utilized in the deployment. That,
again, is kind of the value-to-cost proposi-
tion there. The ratio is consistent with
most or all other AP servers or better than
other AP servers, but it’s basically a

deployment CPU-based licensing model.
SonicMQ, our JMS product, is priced at
$3,000 per CPU utilized in deployment
and the developer copy is made available
for free over the Web on
www.SonicMQ.com.

JDJ: You mentioned the Web site
before. Can you tell us what we can
find there?
Kassabgi: What you’ll find at www.App-
tivity.com and www.SonicMQ.com is an
exposé and a number of the reference

accounts – success stories, as we call
them – with a fair amount of detail.
There’s even an extensive look at some
applications that have been built and
how they were built, and examples of
the kind of thought process behind it. I
believe the example that’s on there is an
application used by Scholastic Inc., the
number one distributor of children’s
books in New York City. That application
is an example of where Apptivity was

used to integrate data from Legacy
application on PeopleSoft human
resource. You’ll also find a detailed
explanation and white papers on what
the product is all about and what it
does, and the ability to download the
product, the developer license. Develop-
ers can download that and…evaluate it,
and there’s no better way to learn about
a product than to use it. I think there’s
also a link of all the press releases and
notable mentions, the so-called “In the
News” section.

QUICKSTREAM
www.quickstream.com

“
”

The number one Web portal in the world, Yahoo!, uses

Apptivity. They use an Apptivity application to manage all their

Web Advertising
on the portal. That is a success story that

the listeners can look at on the Web

Java COM

30 DECEMBER 1999

31DECEMBER 1999

Java COM

VISI COMP
www.visicomp.com

Java COM

32 DECEMBER 1999

WRITTEN BY
HARRY FOXWELL

Java for Linux
Interest is growing in these two technologies

T
wo technologies that have gained widespread interest and
support in the past few years are Java and Linux. Until
recently, however, the two were separate, although they
share similar visions of open, ubiquitous computing. As
interest in both Java and Linux solutions increases, devel-
opers are naturally looking to combine the two, and want
to write applications in Java that run on Linux systems.
But they need stable, fast and fully functional JVMs, espe-
cially for server solutions that require servlets and sup-
port for Java Server Pages.

J A V A & L I N U X

Several independent efforts to port
JVMs to Linux are in progress, including
those by IBM, Sun Microsystems, the
Blackdown Java-Linux Porting Team
headed by Steve Byrne and the Kaffe
group headed by Tim Wilkinson. The
IBM and Blackdown ports are based on
code licensed from Sun, while Kaffe is a
“cleanroom” implementation. Ports
based on Sun code are complicated –
and frequently delayed – by licensing
issues. While IBM has an industry
license for Java technologies, the Black-
down group had to make special licens-
ing arrangements to obtain the Java 2
JVM source code. Sun’s Community
Source Code License may eventually
make it easier to resolve these licensing
issues, although the prevailing opinion
within the Linux community seems to
favor the GNU Public License.

Current JVMs for Linux
Sun currently supports reference

implementations of JDK 1.1 and JDK 1.2
(now called Java 2 SDK) for Solaris and
for Windows 95 and NT. Also available

are highly optimized production ver-
sions for Solaris and Windows. At the
JavaOne Developer’s Conference this
past June, Sun announced a restructur-
ing of the Java APIs and specifications
into the Java 2 Micro Edition for hand-
held and embedded applications, the
Java 2 Standard Edition for workstation
applications and the Java 2 Enterprise
Edition for server applications. The
Micro Edition, for example, excludes
some libraries – such as the AWT classes
– that aren’t needed for embedded sys-
tems and handheld devices. The Enter-
prise Edition targets server application
development and supports Enterprise
JavaBeans classes. The Java for Linux
efforts now in progress target the Stan-
dard Edition, which includes the Java
Foundation Classes.

Available Linux JVM ports are all
based on the “Classic” JVM reference
code and don’t include any of Sun’s
HotSpot or other performance-
enhancement code.

IBM’s port is an early-access release
of the 1.1.8 JVM, and includes a JIT com-
piler and support for native threads.

Linux users who have worked with this
JVM report good performance and sta-
bility. IBM is reportedly working on a
Java 2 port, but they correctly observe
that there is still much demand for 1.1
applications and that 1.2 isn’t widely
used yet.

The Kaffe JVM, included with some
Linux distributions, is a cleanroom
implementation of the 1.1 JVM specifi-
cation. But the most recent release,
1.0b4, doesn’t include RMI support and
is missing several crucial security fea-
tures such as bytecode verification and
observance of “private” modifiers. Tim
Wilkinson, who leads the Kaffe effort,
says several improvements are in
progress, including a significantly faster
JIT compiler and support for the Java 2
Collections API.

The Blackdown ports of the 1.1 and
1.2 JDKs are probably the best-known
implementations for Linux. Led by Steve
Byrne, a former Sun employee, the team
has been working on a fully JCK-compli-
ant 1.2 JVM for nearly a year. The cur-
rent “prerelease” is fairly complete and
stable, and includes a JIT compiler.

FIGURE 1 Set your PATH variable, then test your JVM installation.

33DECEMBER 1999

Java COM

VSI
www.vsi.com/breeze

Java COM

34 DECEMBER 1999

Sun has provided some engineering
support to the Blackdown group for JDK
ports, and has even worked with several
Linux distributors such as RedHat to
help port Linux itself to UltraSPARC sys-
tems. Linux developers would like to
see Sun provide a supported reference
implementation of the Java 2 SDK, but
Sun has made no announcements
about its plans for supporting Java on
Linux.

Java Programming on Linux Systems
You can download Java Developer Kits

for Linux from IBM (www.ibm.com/java)
and Blackdown (www.blackdown.org).
Installation consists of uncompressing
the downloaded file and extracting the
component files and directories. Linux
includes utilities for uncompressing ZIP
files and other compression formats. The
Blackdown distribution file jdk1.2pre-
v2.tar.bz2 is compressed with the bzip2
program. To extract and install the files,
use these two commands:

bzip2 -d jdk1.2pre-v2.tar.bz2

tar xvf jdk1.2pre-v2.tar

After you install the files in a directo-
ry, you need to set your PATH environ-
ment variable so your command shell
can find the javac compiler, the java
runtime program and other Java utility
programs. Also, if you plan to use third-
party Java libraries, you must set your
CLASSPATH environment variable to
include the directory location of those
libraries. For example, I set my Java
environment variables for my command
shell, ksh, like this:

export PATH=/usr/local/java/bin:$PATH

export CLASSPATH=/home/hfoxwell/MyJava

Test your installation by entering
“java - version” from your command
line. The JVM should start up and report
“java version 1.2” or something similar.
If you’re testing more than one JDK, be
sure to set your PATH and CLASSPATH
explicitly for each version that you plan
to use (see Figure 1).

Linux JVMs typically require a “glibc”
C library in order to run. Check the
Release Notes for your JVM to determine
which version of this library is required.
Most current Linux distributions ship
with one or more versions of “glibc”. The
Blackdown 1.2 JDK requires “glibc2”,
also called “libc6”, and is found at
“/lib/libc.so.6”.

All of the current Linux JVM offerings
are unsupported beta or early-access
releases. As such, they are incomplete,
buggy and not fully optimized for per-

formance. The Blackdown 1.2 JVM does-
n’t have a working native threads mod-
ule yet, and the IBM port is missing
some IO exceptions. Moreover, impor-
tant extension APIs, such as Java 3D,
Advanced Imaging, and Sound, aren’t
yet ported to Linux. Sun has provided
source code for these to IBM, Black-
down and other licensees, but it may be
a while before you see these APIs on
Linux.

Java Development Tools for Linux
At JavaOne several vendors announced

plans to provide developer tools for Linux,
including IBM, Inprise and MetroWerks.
Blackdown’s Web site includes an exten-
sive “Java Tools for Linux” link that lists
IDEs and other programs for Java develop-
ers. If you’re familiar with “Emacs”, have a
look at “emacs-JDE” at www.sunsite.-
auc.dk/jde/. If you’d like a full-featured,
drag-and-drop IDE, try NetBeans from
www.netbeans.com/ (see Figure 2). Net-
Beans is written in Java and runs nicely on
Linux using the Blackdown 1.2 JVM. It
supports development in Java 1.1 or 1.2,
and is distributed in a free personal-use
version as well as a commercial, enter-
prise development version.

Conclusion
Open source advocates have raised the

awareness of Linux as a stable, richly fea-
tured operating system. They’re also attract-
ed to Java’s platform-independent pro-
gramming model and to the new solutions
it enables, such as Jini, Enterprise Java-
Beans and JSPs. As Linux JVMs from Sun,
Blackdown, IBM and others become more
stable, complete and competitive, Linux
developers will be able to contribute their
considerable expertise to the widespread
deployment of Java technologies.

URL Resources
1. GNU Public License:

www.fsf.org/copyleft/gpl.html
2. IBM’s Java for Linux: www.alpha-

works.ibm.com/tech/linuxjvm
3. Blackdown Java-Linux Porting Team:

www.blackdown.org/
4. Netbeans Java IDE: www.netbeans.com/
5. Kaffe: www.kaffe.org/
6. Metrowerks CodeWarrior for Linux:

www.metrowerks.com/desktop/linux/
7. Sun’s Linux information site:

www.sun.com/linux

AUTHOR BIO
Harry Foxwell is a

systems engineer for Sun
Microsystems’ Southern

Area, responsible for
technical consulting and
education on Java and

network computing. Harry
has worked with Java

since its introduction in
1995, and is a

contributing author to
Introduction to Pro-

gramming Java Applets,
Java Core Libraries and

Java for Managers,
instructional CDs

published by MindQ. He
also maintains Sun’s

internal Web site of Linux
information.

FIGURE 2 NetBeans provides an easy-to-use Java IDE for Linux.

Sun Acquires NetBeans, Supplier of Java-Based IDE for LINUX
In October Sun Microsystems, Inc., announced the purchase of NetBeans, developer of

cross-platform Java-based integrated development environments. In conjunction with prod-
ucts from Sun’s simultaneous acquisition of Forté Software, Netbeans IDE products will pro-
vide JDK software customers with software choices ranging from entry-level offerings for
individual developers and students to enterprise-class offerings for team development. Free
versions of NetBeans Developer IDE for Solaris, Linux and Windows 98/NT can be down-
loaded from www.netbeans.com/product_dl.html.

harry.foxwell@east.sun.com

J A V A & L I N U X

APPLIED
REASONING

www.appliedreasoning.com

35DECEMBER 1999

Java COM

The distribution of business intelli-
gence through a network of organiza-
tions within an enterprise requires the
evolution of spontaneous networks,
which in turn requires middleware that
facilitates intelligent communication of
information regardless of platform,
device or application. In this context
Java provides a natural platform-neutral
object-oriented approach that supports
a scalable messaging service, JMS (Java
Messaging Service), now a standard part
of the Java 2 Enterprise Edition (J2EE).

Leading the way with a JMS interface
to their messaging service is SoftWired,
whose iBus//MessageBus is the first of
seven products that allow companies to
build scalable electronic business sys-
tems more easily. iBus distributes mes-
sages and business events through vari-
ous communication protocols to diverse
applications. SoftWired decided to use
Java for this product as early as 1996,
when few tools were available to assist
developers with this relatively new lan-
guage.

Lightweight messaging middleware
written entirely in Java is the core of
SoftWired’s iBus solution. This pub-
lish/subscribe middleware allows any
type of computing device (PC, server,
mainframe, PDA, cellular phone) to effi-
ciently exchange information by any
communication protocol (IP multicast,
TCP/IP, HTTP, wireless).

Working as a unit of nine developers,
SoftWired needed to ensure that Mes-
sageBus was fast and efficient enough to
deliver business events in near real-
time. When Silvano Meffeis, executive
vice president of SoftWired, encoun-
tered a performance problem in the
module that set up the network configu-
ration, he used JProbe Profiler from KL
Group to find the cause.

He had suspected that the problem
lay in serialization/deserialization of the
network objects. “That was only a guess
until I ran Profiler, which pinpointed
exactly where we needed to optimize.”
JProbe soon became an indispensable
part of SoftWired’s development:

“JProbe Profiler enabled us to enhance
the performance of our Java messaging
middleware by 50%.”

Meffeis also found performance bot-
tlenecks in unexpected places. He found
that using the “+” operator to concate-
nate strings was simple to code but
expensive to run, since each concatena-
tion actually created a StringBuffer
object that was thrown away after use.
Detecting performance problems relat-
ed to string manipulation would have
been difficult without tools such as Pro-
filer, since the calls to these methods
were distributed throughout the pack-
age. After witnessing the effects of the
methods on the system’s overall perfor-
mance in Profiler, Meffeis decided to use
them less often. By converting the
strings to byte arrays before transmis-
sion and converting them back to
strings only if required, Meffeis
improved the performance of the mod-
ule by 20%.

Using JProbe Profiler on MessageBus
was just the beginning. JProbe’s Memory
Debugger (fully integrated with JProbe
Profiler) enabled SoftWired engineers to
find message objects that were no
longer being used but still taking up pre-
cious memory. Once these objects were
located, following the stack trace back to
where these objects were created was
easy, enabling the developers to manage
them more effectively.

Senior software engineer Bill Kelly of
SoftWired used JProbe Threadalyzer to
look for race conditions or missing locks
on data. “I ran some tests and it pointed
out how a few messages should have
been synchronized, things I’d never
have found myself.”

Threadalyzer also caught a race con-
dition. Race conditions and other thread
problems manifest themselves rarely,
but when they occur, the results can be
unexpected and catastrophic. “We had-
n’t noticed any symptoms,” Kelly says.
“We were lucky.” Debugging thread

Software Development Productivity

WRITTEN BY
SAM WATTS

Java COM

36 DECEMBER 1999

SoftWired optimizes Java messaging for the enterprise using JProbe

TCP/IP, CORBA

iBus//ANSI-C

SUBSIDIARY US SUBSIDIARY EUROPE

JDBC...

Database Access iBus//Embedded

iBus//Web iBus//Extranet

Real-Time
Information

Clients (Applications, Browsers)

TCP/IP, HTTP, SSL
TCP/IP, HTTP, SSL

(Internet Link)Web Clients
(Internet)

Application Servers
(EJB services etc.)

iBus//Extranet

iBus//MessageBus or iBus//JMS Business Events iBus//MessageBus or iBus//JMS

FIGURE 1 SoftWired's messaging solution for e-business

37DECEMBER 1999

Java COM

UNIFY
www.ewavecommerce.com

Java COM

38 DECEMBER 1999

problems without tools is notoriously difficult. “If [the
race condition] had ever come up in practice, it would
have been extremely complicated to try to find.”

Kelly says, “If you’re working on software that’s already
complex, the threading issues can have devastating con-
sequences. Having performance-tuning and thread
analysis tools to look over your shoulder is essential.” He
also found JProbe Coverage useful for establishing which
parts of the system had not been executed and required
testing. “Having a coverage tool can motivate you to test
better. It’s fun to see yourself getting closer to the coverage
level you’ve set your sights on.”

Working out the problems of the iBus//MessageBus
modules early was important to SoftWired. Releasing
iBus//JMS in September 1999 was a key milestone. With
JMS a standard part of J2EE, application servers will need
to upgrade to this level of service, and at present few
application servers have a JMS implementation.

SoftWired’s JMS interface means that their iBus solu-
tion can be combined with an application server and
SoftWired add-on products to constitute a complete set
of J2EE-compliant services. With an implementation in
100% Pure Java, accurately profiled and tested for per-
formance, memory, and thread and test coverage prob-
lems, SoftWired’s engineers are confident that these
products form the ideal building blocks of large and
complex networks, spanning platforms, systems and
protocols.

AUTHOR BIO
Sam Watts is studying computer science at the University of Waterloo, Ontario.
He specializes in Java development.

SLANGSOFT
www.slangsoft.com

JProbe 2.5 ServerSide Edition Now Available
Server-side Java demands high performance and reliable code. When a server is

providing output to thousands of users, it can’t afford to run into performance bot-
tlenecks, memory leaks or threading problems. JProbe 2.5 ServerSide Edition brings
powerful server-side performance-tuning capabilities, full Solaris support and IBM
VisualAge integration to this award-winning suite. The product includes JProbe Pro-
filer (with integrated JProbe Memory Debugger), JProbe Threadalyzer and JProbe
Coverage.

Server Launch Pad
The new JProbe Server Launch Pad enables easy point-and-click integration with

major Web and application servers, such as:
• IBM WebSphere
• BEA WebLogic
• Java Web Server
• Allaire JRun
• Sun Servletrunner

Solaris
JProbe ServerSide Edition also introduces suite-wide support for Solaris 2.6 and

7 for developers working in JDK 1.1 or Java 2 (JDK 1.2).

IBM VisualAge
IBM VisualAge for Java stores all Java files in its own source code repository,

which can make tuning an application a lengthy and complex process. With JProbe
2.5 support for VisualAge, tuning an application, EJB or servlet written in VisualAge
for Java is quick and simple.

JProbe Threadalyzer Enhancements
JProbe 2.5 (both Developer and ServerSide Editions) introduces new lock analyz-

ers that extend the predictive value of JProbe Threadalyzer, and an all-new Visualiz-
er that provides a more graphically intuitive means of detecting thread problems.

sgwwatts@undergrad.math.uwaterloo.ca

39DECEMBER 1999

Java COM

FIORANO
www.fiorano.com

Representation and support for associations can be a crucial
issue when implementing object-oriented systems

WRITTEN BY
SCOTT DANFORTH

Associations for EJBs

O
bject-oriented systems analysis and design typically yield
an object model whose classes are organized using inheri-
tance and associations. Inheritance represents common
interfaces and behavior among different classes of objects.
Associations represent statically typed binary relationships
between objects that are established and modified during
operational use of the system.

O O P R O G R A M M I N G

Java COM

40 DECEMBER 1999

When the object model for a system is
implemented using an OO program-
ming language, classes and inheritance
relationships of the model can be
mapped directly into statically defined
classes within the language. But associa-
tions between objects aren’t supported
as OO programming language primi-
tives. Thus representation and support
for associations can be a crucial issue
when implementing object-oriented
systems.

This article considers how associa-
tions might be represented and sup-
ported within the framework offered by
Enterprise JavaBeans.

Important Aspects of Associations
ASSOCIATIONS ARE DETERMINED BY ROLES

Due to the binary nature of its corre-
sponding relationship, an association is
determined by two roles whose names
and static types characterize the objects
that participate in the relationship. For
example, if an association has two roles
of type Person, named mother and
child, a Person object that plays the
mother role is expected to be (in a repre-
sentational sense) the mother of the
related Person objects playing the child
role. A UML diagram representing such
an association might appear within
Rational Rose as shown in Figure 1.

CARDINALITY AND NAVIGABILITY DESCRIBE ROLES
Roles have an associated cardinality.

The above model specifies that a child
has exactly one mother, but a mother
can have any number of children. The
other important aspect of a role is navi-
gability. In Figure 1, for purposes of illus-
tration, a directed association link is
used to model a system in which a
mother knows her children, but the chil-
dren don’t know their mother.

ASSOCIATIONS AND INHERITANCE ARE INTEGRATED
BY AN OBJECT MODEL

Associations and inheritance appear
in an integrated manner within an
object model. Figure 2, derived by elab-
orating on the initial example in Figure
1, illustrates this by presenting a model
in which every Person has exactly one
mother and one father, and every
Female and Male is a Person and may
have any number of associated children.

ASSOCIATIONS CAN BE REPRESENTED BY METHODS
When a class of objects is modeled as

participating in an association and the
related role is navigable, instances of the
modeled class are intended to have
some way of accessing the objects that

play that role. It’s therefore reasonable to
postulate the existence of a method for
computing or accessing an association
“role extent” for instances of the class.

As there are four navigable roles in the
example above, four different methods
would be provided to access role
extents. A vector can be used to return
n-ary role extents.

public Female Person.mother();

public Male Person.father();

public Vector Female.children();

public Vector Male.children();

In keeping with the use of associations
to represent dynamically changing rela-
tionships, association modification meth-
ods are often appropriate. Depending on
the system being implemented, a class
that participates in associations may pro-
vide “add” and “remove” methods corre-
sponding to its associations’ opposing
roles. In the current example these meth-
ods could appear as follows:

public void Person.addFather(Male f);

public void Person.removeFather(Male m);

public void Person.addMother(Female m);

public void Person.removeMother(Female m);

public void Female.addChild(Person c);

public void Female.removeChild(Person c);

public void Male.addChild(Person c);

public void Male.removeChild(Person c);

An important aspect of association
modification is that it generally affects
role extents for multiple objects on both
ends of an association. For example,
adding or removing an association
between a mother and child will affect
the extent of the child role (accessed
from the mother) as well as that of the
mother role (accessed from the child).

FIGURE 1 Example of a directed
association link

FIGURE 2 Example of associations and
inheritance

41DECEMBER 1999

Java COM

POINTBASE
www.pointbase.com/jdj

O O P R O G R A M M I N G

Java COM

42 DECEMBER 1999

Thus, implementing the dynamics of an
association requires more than support-
ing references between objects.

The approach illustrated above pro-
vides a simple and intuitive basis for sup-
porting associations from within an
object-oriented programming language:
object methods are used to maintain asso-
ciations and access navigable role extents.
But how are these methods to be imple-
mented? The following section offers an
approach that might be appropriate for
container-managed Enterprise JavaBeans.

EJB Developer vs Deployment
Responsibilities

We’re concerned here with how to
support persistent associations between
container-managed entity beans.

DEVELOPER RESPONSIBILITIES
1. The EJB developer determines an ob-

ject model and provides EJB classes cor-
responding to this model. The EJB
classes provide various “association
methods,” as illustrated above, that are
used by clients (through remote inter-
faces) and by other EJBs to maintain
associations and access navigable roles.

2. The EJB developer uses container
APIs (from an extension of the Entity-
Context interface) to implement the
association methods.

3. The EJB developer communicates
essential aspects of the object model
to the deployment phase within the
deployment descriptor to allow the
container to support the required
associations via its APIs.

DEPLOYMENT RESPONSIBILITIES
1. The EJB deployer inspects the object

model provided by the deployment
descriptor and implements the
required object model associations in
a manner appropriate for the specific
EJB container technology being
employed. For example, when using
EJB containers based on object-rela-
tional mappings, association tables
might be determined and created (in
addition to any database tables
required for storing object state). For
containers based on single-level store
object technology, other implementa-
tions might be appropriate.

2. The resulting database schema and
other implementation information for
the model associations are provided to
the container in whatever way is
appropriate for the particular contain-
er being used. This information is what
enables the container to support
object-model associations through the
association-related APIs in the contain-
er’s extended EntityContext interface.

AN EXTENDED ENTITYCONTEXT INTERFACE WITH
ASSOCIATION SUPPORT

An extended container interface pro-
vides complete support for computation
and modification of role extents. In the
simple approach suggested in Listing 1, a
vector is used to hold role extents that,
after registration, are kept up to date by
the container when it executes associa-
tion modification operations.

USING ASSOCIATIONSUPPORT
EJBs use the extended container

interface to compute and modify role
extents. When a role extent is first need-
ed, an EJB class creates an appropriate
collection for the extent and then regis-
ters it with the container. After this, the
container maintains the role extent as
required when add- or remove-associa-
tion methods are called. Listing 2 illus-
trates how this appears in the case of the
Person class.

COMMENTS ON THE CODE
The most important aspect of the

approach in Listing 2 is that it relies on
the container to compute and maintain
role extents. This corresponds with
other container responsibilities in the
case of container-managed entity beans.
In general (assuming bidirectional navi-
gability), two role extents will be updat-
ed by the container when an association
is modified. Of course, the container will
also modify whatever container-depen-
dent state is used to support persistence
and the initial registration API. For
example, in the case of object-relational
mappings, a persistent association table
containing foreign keys of associated
objects might be updated.

Implicit in Listing 2 is the idea that
an EJB is allowed to access other EJBs
(not their remote interfaces) directly
via registered role extents. Direct access
to another EJB within the same con-
tainer is actually a novel idea in the
context of the EJB specification, so the
act of registration seems appropriate.
For one thing, a container needs to
know which objects can and cannot be
passivated.

public interface AssociationSupport extends
javax.ejb.EntityContext
{

public void registerRoleExtent(Object target,
String roleName,
Vector roleExtent);

public void addAssociation(Object target,
String roleName,
Object rolePlayer);

public void removeAssociation(Object target,
String roleName,
Object rolePlayer);

}

public class Person {
AssociationSupport ctx;

public void setEntityContext(EntityContext _ctx) {
ctx = (AssociationSupport) _ctx;

}

public Male father() {
if (fatherExtent == null) {

fatherExtent = new Vector();

ctx.registerRoleExtent(this, "father", fatherExtent);
}
return (Male) fatherExtent.elementAt(0);

}

Vector fatherExtent = null;

public void addFather(Male f) {
ctx.addAssociation(this, "father", f);

}
public void removeFather(Male f) {

ctx.removeAssociation(this, "father", f);
}

public Female mother() {
if (motherExtent == null) {

motherExtent = new Vector();

ctx.registerMotherExtent(this, "mother", motherExtent);
}
return (Female) tmp.elementAt(0);

};
Vector motherExtent = null;

public void addMother(Female m) {
ctx.addAssociation(this, "mother", m);

};
public void removeMother(Female m) {

ctx.removeAssociation(this, "mother", m);
}

}

... similarly for Male and Female

Listing 2

Listing 1

43DECEMBER 1999

Java COM

AMERICAN
CYBERNETIC

www.multiedit.com

O O P R O G R A M M I N G

Java COM

44 DECEMBER 1999

Listing 2 assumes a single global
name space for role names and that the
class of a target object and a role name
uniquely determine an association. A
more realistic approach might be to
scope role names within association
names. Association names for the above
example might be chosen as M and F,
resulting in the fully scoped role names
M.mother, M.child, F.father and F.child.

OTHER ISSUES
We haven’t discussed the client API for

associations. Vector provides a simple
collection class that’s appropriate for the
general-purpose EJB/container API for

associations. But the client API for main-
taining and accessing specific associa-
tion roles (provided from the remote
interface of the target object) can use
types specific to the particular associa-
tion role involved. For example, when
accessing n-ary role extents containing a
particular type of object, the collection
interface used for finder operations on
that type would seem appropriate.

We’ve avoided discussing container-
specific mechanisms made available to
deployers in support of associations. How-
ever, the overall approach suggested above
is consistent with that used by Secant
Extreme Enterprise Server for EJB. There,
deployment includes creation of associa-
tion tables and generation of a “metadata”
file that describes these tables, the associa-
tions they support and the corresponding
EJB classes. The metadata file is provided
at runtime to a Secant EJB service (con-
tainer) that loads the corresponding EJB
classes and then uses the indicated tables
to support persistent associations.

LOCAL/REMOTE ACCESS
In Listings 1 and 2 the expectation is

that associations between EJBs are made
visible to remote clients through the
beans’ remote interfaces. However,
“local” associations (available to support
business logic but not visible to remote
clients) might be useful in some cases.

Conversely, it seems reasonable that
an application assembler might want to
associate EJBs from separately developed
object models. In this case the remote
interfaces of the selected EJBs would be
provided with association methods, and
deployment would provide their imple-
mentations (instead of deferring to EJB
classes). In this case client applications
would be able to make use of associa-
tions, but business logic would not.

Thus we suggest “local” and “remote-
only” as special kinds of associations in the
deployment descriptor. Local associations
would be specified by a bean developer
and supported by EJB classes. Remote-
only associations would be specified by an
application assembler and completely
supported by remote interface objects.
Both possibilities seem potentially useful.

Summary
Inheritance and associations are

object modeling ideas that are important
when implementing software for com-
plex, real-world systems. The purpose of
this article was to condense these gener-
al ideas into a simple, concrete form that
I hope will be useful for supporting dis-
cussion and further work in this area.

scott@secant.com

Inheritance and
associations are object

modeling ideas that
are important when

implementing
software for complex,

real-world systems

‘‘

Career
Central

www.careercentral.com/java

AUTHOR BIO
Scott Danforth works at

Secant Technologies, Inc., in
Cleveland, where he focuses

on the development and
practical application of

object-oriented technology. He
has a Ph.D. in computer

science from the University of
North Carolina at Chapel Hill,

and is the coauthor of
Objects for OS/2 and

Putting Metaclasses
to Work.

’’

45DECEMBER 1999

Java COM

TIDESTONE
www.tidestone.com

Founded in 1996, Visualize, Inc. develops
and markets a series of Java-based products
for interactive data analysis and visualization.
They announced the availability of the latest
version of their VantagePoint data visualiza-
tion class library at JavaOne back in June,
and I was recently given the opportunity to
test out the new version of the software.

Understanding VIDA
Visualize recommends that you have

some experience working with Java pro-
grams and data visualization before you
start working with VantagePoint. The key
to your success with the product is under-
standing Visualize’s VIDA (Visual Interac-
tive Data Analysis) architecture. VIDA is
the process by which numerical data is
translated into pictures that are more
intuitive for end users to understand.
VantagePoint supports a wide variety of
these 2D, 21/2D and 3D visualization
objects (charts and graphs) with hooks
that allow you to add real-time drill-
downs. Visualize provides precooked
example programs that show you just
how this interaction process works, and
I found these examples incredibly help-
ful in mastering the product.

Installation and Configuration
Visualize makes the software avail-

able through their Web site. The Van-
tagePoint download is delivered as an
InstallShield Java Edition program,
which means you’ll need to have a copy
of the JDK installed in order to run the
installation program. Installation is
quick and painless and the entire
extract takes up only 25 megabytes of
disk space. VantagePoint is packaged as
a set of class libraries, which are meant
to be used with a Java development
environment. Therefore, the installation
program doesn’t create the start-menu
icons you’d typically find with other
Windows-based installations.

Working with VantagePoint
The easiest way to get started is to navigate

to the root directory for VantagePoint and to
open up the “index” HTML page, which will
take you to a link for the online manuals. With-
in the manuals you’ll find a wealth of example
charts and graphs, such as the one shown in
Figure 1.

All of the examples can be run directly from
the example HTML pages. Visualize cleverly
includes a listbox window in which you can see
the events firing as you interact with the
graphs. Since I’m not intimately familiar with
the ins and outs of data visualization, I found
these interactive examples to be an excellent
way of learning how to work with the Vantage-
Point libraries. Visualize has a sparse tutorial,
but I was able to use it to get my first program
up and running fairly quickly. When you down-
load VantagePoint you’ll receive a license key
via e-mail from Visualize. In order to run any of
your own code you’ll need to load the license as
a parameter using the addLicense method of
your charting object. I loaded the two-dimen-
sional line chart sample program source code
into the NetBeans Java IDE and edited the sam-
ple source code. I then added my license key to
the chart object and modified the data values
and parameters for this sample line chart. The
resulting months-and-orders graph is shown in
Figure 2. While it isn’t terribly sophisticated,
you have to appreciate the fact that I had the
code modified and running in less than 10
minutes.

Summary
VantagePoint comes equipped with some

very sophisticated routines for managing data
and calculations and it will take you some time
to become familiar with all of the capabilities
of the product. This is not a product for a
novice developer, but I’d recommend it for
those developers that are looking at creating
complex interactive visualization applica-
tions.

jmilbery@kuromaku.com

AUTHOR BIO
Jim Milbery is a software consultant with Kuromaku Partners
LLC, based in Easton, Pennsylvania . He has over 15 years
of experience in application development and relational
databases. Jim can be reached via the company Web

site at www.kuromaku.com.

Test Environment
Client/Server:
Dell Precision 410,
128MB RAM,
10 gigabyte disk drive,
Windows NT 4.0 (Service Pack 4)

Visualize, Inc.
1819 East Morten, Suite 210
Phoenix,AZ 85020
Phone: 602 861-0999
www.visualizeinc.com

Java COM

46 DECEMBER 1999

FIGURE 1: Event example graph

FIGURE 2: Modified simple chart

P
R

O
D

U
C

T

R
E

V
I

E
W

P
R

O
D

U
C

T

R
E

V
I

E
W

by Visualize, Inc.

Data visualization class
library worth the effort

VantagePoint
4.0

REVIEWED BY JIM MILBERY

47DECEMBER 1999

Java COM

NEW ATLANTA
www.newatlanta.com/

It’s easy to get caught up in the hype
and lose touch with reality. The Internet
fosters a new type of dynamics that
encourages and embraces change faster
than the stability of technology. It’s an
ever-increasing challenge for developers
and architects to make decisions regard-
ing when to adopt a new technology and
how long to retain the old one. The com-
plexity of these decisions is compound-
ed in that computing technologies usu-
ally span multiple tiers of an n-tier appli-
cation. Development managers and pro-
ject managers face their own problems
when dealing with distributed architec-
tures. One of them is how to structure
the development team such that the
skillsets of the team members map
across the various technologies used to
implement the business solution. Who is
the architect and how does he or she
keep a handle on both ends of the spec-
trum – from the back office to the front-
end browser? What kind of middleware
expertise is needed? What kind of GUI
needs to be built and how much are the
tools going to cost? How does the team
responsible for the middleware interact
with the front-end Web developers?

One way to alleviate the risk in making
such decisions is to clearly define what the
tiers of the architecture are going to be and
how the functionality of your application
maps to those tiers. Everybody talks about
n-tier architectures and distributed archi-
tectures. But the bottom line is – How do
you serve up data to your clients? This
month in e-Java we’ll start from where we
left off last month. We’ll revisit the four
basic tiers of a distributed e-commerce
application. Our focus will be more on the
front end and middle tiers, and on some
alternative Java and Web technologies
available in the market to implement func-
tional modules in business applications.

The Four Tiers
A typical distributed architecture that

nurtures e-commerce applications con-
sists of four-tiers:

• Client user interface tier
• Presentation tier
• Business logic tier
• Data access tier

Table 1 describes the purpose of each
tier in an e-commerce application. In
today’s Web applications all of us strive to
make the client as thin as possible. One of
the main reasons for this is that end-user
devices today range from desktop PCs to
handheld PCs, cell phones and pagers.
Thus, in the optimum distribution of
tiers, the client UI tier will have minimum
functionality; its only purpose will be to
render the data on the screen using the
display device’s native graphic utilities.
The thinnest “universal” client in today’s
distributed systems is the browser.

After All, It’s All HTML
When it comes to the browser-based

UI, all the data that the browser renders
is interpreted from HTML. This means
that the next tier down in the distributed
system serves up HTML to the client.
Traditional HTML serves static data only.
To provide the high degree of interactivi-
ty typical of e-commerce transactions,
HTML allows Web developers to embed
tags that direct the browser to get fresh
data from the server. Why do we have to
go to the server to get data? Because the
thin client doesn’t do anything else but
display data; it doesn’t produce data.
That’s the job of the presentation tier.

Java applets provide a way to dynami-
cally generate HTML content. However,
applets are downloaded to the client and
executed there, thus making the client
thicker. Applets enable highly interactive
behavior for the client and are good for
calculations that can be conducted on
the client side. But more complex com-
putations that involve frequent data
access (and require security) on the serv-
er side need to be executed in the next
tier. This is the presentation tier and its
responsibility in our context is serving
up HTML to the browser-based client.

Splitting the Middle Tier
Thus dynamic content is generated by

the tier next to the client UI. This tier, called
the middle tier in traditional three-tier sys-
tems, could basically access the data from
the back-office system, apply business logic
to it and serve up HTML to the client. So
why split this into a presentation and a busi-
ness logic tier? Let me answer that question
with another question. How do you get data
from your data source that resides in the
back office? The data could be obtained
from sources of various types – database
server, file servers, LDAP servers or some
legacy system’s proprietary interface. The
result is that the means of getting the data
will differ. Depending on the back-office
interface, the middle tier’s connection to the
back office could be via DCOM, CORBA,
RMI, raw HTTP or a variety of other proto-
cols. The scope of a transaction could be

Focusing on the front-end and middle tiers,
and some alternative technologies

T
he story about how the n-tier architectures evolved from the single-tier mainframe model has proba-
bly been told umpteen times by now (in fact, I retold it myself in last month’s e-Java column). Nowa-
days the trend is to distribute functionality. Modularize everything. Components provide the means to
successfully replicate your product in a gazillion scenarios. Client/server is old news.Think distributed
architectures. Personalized Webtops.That’s the name of the game today.

E - J A V A

Splitting Tiers

48 DECEMBER 1999

Java COM

TIER PURPOSE

Client Renders data to user device using the device’s graphic or other user
interface utilities; interacts with end user

Presentation Gets user input, parses it, submits it to business logic tier, gets results back
from this tier, sends them to client

Business Logic Gets data from data access tier through access mechanisms, applies
business logic relevant to transaction, submits data to presentation layer;
responsible for retaining state of transaction and workflow

Data Access Gets data from back office, sends it to business logic layer in response to a
query; also responsible for executing updates initiated by client

TABLE 1 Purpose of each tier in an e-commerce application

WRITTEN BY
AJIT SAGAR

49DECEMBER 1999

Java COM

TOGETHER J
www.togethersoft.com

AUTHOR BIO
Ajit Sagar is a member of

the technical staff at i2
Technologies in Dallas,

Texas, focusing on
Web-based e-commerce

applications and
architectures.

A Sun-certified Java
programmer with nine
years of programming
experience, including

three in Java, Ajit holds an
MS in computer science

and a BS in electrical
engineering.

E - J A V A

Java COM

50 DECEMBER 1999

very different, depending on the business
logic defined in the middle tier. If it’s the
same logical layer that deals with presenta-
tion logic as well as business logic, it
becomes very complex. Also, since it’s tight-
ly coupled with the back office, it becomes
less flexible and nonportable. This leads to
scalability and performance issues.

The popular approach to solve these
problems is to allow multiple applica-
tion objects in a business logic layer.
These application objects are responsi-
ble for getting the data from the server
and making it available to the presenta-
tion layer. The presentation layer gener-
ates the dynamic HTML and makes it
available to the client browser.

Generating Dynamic Content
The presentation layer has several alter-

natives for generating the dynamic con-
tent and serving it back to the client. The
most popular approaches are via server-
side scripting, Java servlets and Java Serv-
er Pages (JSPs), and Active Server Pages
(ASPs). ASPs, Microsoft’s technology for
accessing COM objects, are beyond the
scope of this article. JSPs are Java’s coun-
terpart to ASPs (hence the name JSP) and
are Sun’s technology for accessing Java
objects on the server. All services on the
servlets are Java’s gateway to all services on
the server side. Servlets are always associ-
ated with a Web server. They’re created as
server threads as a result of a client’s HTTP
request and they serve up HTML content
as a response. A JSP allows developers to
embed Java code in HTML pages. These
hybrid pages have a .jsp extension and can
contain a combination of HTML, Java
code and JavaBean components. When
the client makes an HTTP request, the
servlet engine on the server compiles the
JSPs into corresponding servlets.

Another way to add dynamism to
HTML is via server-side scripting using
JavaScript or JScript. Scripting code is
embedded in the page. The difference is
that, unlike JSPs, scripting code isn’t
compiled, it’s interpreted. Although this
is slower, it’s faster to develop, prototype
and test. Another popular middleware
technique for generating dynamic
HTML is to use extensions to HTML
tags, which allow the page to access
dynamic content. This technique is
offered by Web application program-
ming languages like Allaire’s CFML.

These presentation technologies are
still needed to talk to the business logic
tier in order to actually obtain the data
that needs to be presented. That is where
server-side technologies like EJBs and
COM come into the picture. The busi-
ness logic and data source accessibility is
abstracted by these technologies.

E-Commerce Functional modules
The technologies selected for your

application should be based on the
behavior that’s expected from the func-
tional module. For example, you can cre-
ate a shopping cart component using CGI,
JavaScript, servlets, JSPs, CFML or other
types of dynamic-content generation
technologies. However, when settling on a
technology, you should ask yourself what
the interface to the business logic tier is.
Are your business objects COM objects,
EJB objects or just database adapters? Can
you access the COM objects via CORBA? Is
there even a need to talk to the business
logic tier for all transactions? For example,
if the next step in your workflow is a cred-
it card payment, the information doesn’t
need to go beyond the presentation layer,
provided that the presentation layer has
hooks into a credit card payment system
like CyberCash.

One of the unique features offered by
technologies like CFML is that it allows
you to embed SQL inside your HTML.
This means you can access the database
directly from your HTML page as
opposed to going to a business logic
layer. This allows you to segregate your
database into a front-end database,
which could contain, for example, user
profiles, account information and
maybe local catalog information. On the
other hand, if you need to access services
offered by the back office such as infor-
mation pulled out in real time from a
reservation engine, you probably need to
call Java or COM objects on the server
side. In addition, if your catalog informa-
tion is dependent on business rules that
tie into the back office, then you’d prob-
ably like to go through a business logic
tier. In that case JSPs may be a better
alternative to build your shopping cart.

Trading Places
The notion of splitting the middle tier is

important for building robust and flexible
business applications. You may also want
to divide the responsibility of load balanc-
ing and fault tolerance between the two
middle-tier layers (presentation and busi-
ness logic). For example, both ColdFusion
(presentation) and WebLogic (business
logic) offer clustering capabilities. Some
transactions, such as credit card payments
or catalog queries, may not need to go back
to the business logic tier. Decoupling these
two layers gives a large boost to scalability.

In the end, what the end user sees is
your workflow that abstracts him or her
from all these complexities. However, as
someone who provides e-business solu-
tions, I believe it’s our job to create these
abstractions to offer a more satisfying
experience for the users of our systems.

E-Book
Starting this month, I’d like to add a

monthly book review to the e-Java col-
umn, an idea I am shamelessly stealing
from Alan Williamson of Straight Talk-
ing fame. Having received mail from
several readers who have asked about
good sources of information on several
topics, I figured this is a good way to
share my opinion on recently released
books with all you fine folks.

In the mad rush for deliverables and
the race to overcome the time-to-mar-
ket dilemma, I find myself more often
than not desperately trying to catch up
on technology. In Java, that roughly
translates to new APIs. Since I returned
to Dallas pumped up from JavaOne in
June, I’ve been trying to find time to
catch up on J2EE. O’Reilly & Associates’
Nutshell Handbook series seems to be
created for such situations. Java Enter-
prise in a Nutshell: A Desktop Quick Ref-
erence is a great book if you want to get a
quick ramp-up on the J2EE APIs. It starts
off where Java in a Nutshell ended. This
is an excellent reference, but it’s not for
everyone. If you’re looking for a compre-
hensive Java reference that covers Java
in all its glory, this isn’t the book for you
– try Core Java published by Prentice
Hall. If you’re looking for a book on Java
1.1 APIs, don’t start with this one – start
with its predecessor.

If you know core Java, however, and
are interested in a quick introduction to
the APIs provided by the Java platform
for developing enterprise applications,
make sure you get a copy of Java Enter-
prise in a Nutshell. In typical “nutshell”
style, Part I starts with a quick introduc-
tion to the Java enterprise APIs, and also
gives a concise explanation of what
enterprise computing means and how it
relates to Java. The diagram on page 12
and the corresponding discussion in
chapter 1 are instrumental in bringing
readers up to speed with the current role
of Java APIs in an e-commerce applica-
tion. Part II covers the J2EE APIs – JDBC,
RMI, Java IDL, Java servlets, JNDI and
EJBs. There’s just enough code to get
your feet wet. If you want to look up an
API, read the corresponding chapter,
play around with the examples and then
go write your application. For more
detail and complex examples you’ll have
to get a book that focuses on that partic-
ular API. Finally, Part III of the book is a
comprehensive quick reference for the
enterprise APIs.

All in all, this is a good book to add to
your library. And it’s light enough to haul
along if you have to travel.

ajit@sys-con.com

51DECEMBER 1999

Java COM

METAMATA
www.metamata.com

Java COM

52 DECEMBER 1999

OBJECT
www.objectdes

53DECEMBER 1999

Java COM

DESIGN
sign.com/javlin

WRITTEN BY
JASON WESTRA

The Oracle at Boulder

E J B H O M E

I
was asked to stick my neck out and write on the future of
Enterprise JavaBeans in year 2000. Just so you know, I was
one credit away from a minor in the classics (you know,
Greek mythology, ancient Rome and Egypt). However, since
I didn’t major in this field, nor even minor in it, don’t hold me
to anything I say for I’m no Oracle at Delphi. I’m just a
soothsayer from Boulder, Colorado, and even then I’m only
one of many (though most in Boulder foretell fortunes
based on constellations, tarot cards or your sign!).

The year of the application server boom is just about over.What happens next?

Java COM

54 DECEMBER 1999

This month I’ll give you my gut feel-
ings on what’s in store for EJB next year.
I hope to enlighten you, but suspect that
anyone following the EJB rage over the
past year or so has come up with some
of the same conclusions.

Y1999 – Where Are We Coming From?
To know where we’re going, we need

to take a look at where we’re coming
from. So let’s gaze into the past year or
so to understand how EJB got to where it
is today.

I consider (and I’m not alone) 1999
the year of the application server boom.
There were three key catalysts driving
this movement: Microsoft’s component
model COM/DCOM (including COM+)
matured, XML’s importance for EAI
increased and, most of all, Enterprise
JavaBeans became the server-side com-
ponent model of choice for Java devel-
opers worldwide. In 1999 it seemed as
though any company that had ever done
server-side Java in the past became an
application server vendor offering an
EJB solution.

To my way of thinking, no other tech-
nology has influenced the application
server boom as much as EJB. The enor-
mous interest derives from the fact that
its component model shelters develop-
ers from the need to develop low-level
services such as distributed object com-
munication and location, transaction
support, resource and thread allocation,
and even persistence of enterprise
beans. In addition, EJB developers work
with a fun, portable platform and focus
on the business logic of their applica-
tions, thereby increasing time-to-mar-
ket of their products.

In 1999 we saw numerous EJB prod-
ucts released, including EJB servers of
varying degrees, third-party EJB con-
tainers, and code generators and
deployers bundled with various compo-
nent modeling tools and Java IDEs. With
this exciting support for EJB in 1999, it
looks as though EJB is on the verge of
greatness in year 2000.

Y2000 – Where Are We Going?
EJB is maturing at a rate faster than

anyone could have guessed…or hoped
for. This pace of growth influences my
belief that in year 2000 the following will
occur:
• The flooding of the EJB server market

will subside, leaving a few dominant
players controlling a large portion of
the market.

• The market for reusable third-party
components will be realized (but not
fully).

• The server-side component model
wars that began in 1998 and increased
in 1999 will escalate to a point at
which there may be a declared winner.

• An increase in demand for Enterprise
JavaBeans technology will cause a
shortage of EJB talent, fostering a
demand for training and skills in dis-
tributed computing.

Market Share of EJB Servers
When JDJ editor-in-chief Sean Rhody

last counted, 28 companies with appli-
cation servers were offering EJB support
(thanks for the legwork, Sean!). Depend-
ing on when Sean counted his beans,
this number is perhaps one less: Forté
Software, Inc., recently merged with Sun

Microsystems. The merger is an exam-
ple of times to come as more and more
small fish in the EJB server sea consoli-
date with larger, established companies.
While the number of EJB servers may
continue to increase in the year 2000, I
believe that 80% of the market for EJB
servers will be controlled by BEA Sys-
tems, Inc., IBM, Oracle and Sun
Microsystems (the Big 4).

I don’t think that all 28 vendors offer-
ing EJB support are really battling for a
share of the EJB server market. Rather,
they include EJB support as a necessary
feature to sell their application server,
which really may have been built to
solve other problems, such as data inte-
gration EAI and dynamic Web content
management. For example, Novera Soft-
ware, which used to call its flagship
product the Novera jBusiness Applica-
tion Server, changed its name to the
Novera Integration Server. While
datasheets mention its EJB support, the
NIS is really marketed for its ability to tie
disparate data sources together in a uni-
fied business component view – not its
EJB prowess.

In 2000 those companies that are real-
ly battling for a portion of EJB’s lucrative
server business will gain market share
based on three criteria: current market
position, technology/implementation
beyond J2EE, and runtime monitoring
and deployment facilities. Each is dis-
cussed in depth below.

1. CURRENT MARKET POSITION
The Big 4 win here. As previously stat-

ed, the big fish of the EJB server market
that I’m referring to are BEA, IBM, Ora-
cle and Sun. These firms hold a major
portion of the market now, and will

55DECEMBER 1999

Java COM

INTUITIVE
www.optimizeit.com

E J B H O M E

Java COM

56 DECEMBER 1999

increase their market share through rep-
utation and sales of existing products, or
through an acquisition/merger situa-
tion with companies offering similar
products (e.g., BEA Systems’ purchase of
WebLogic and Forté’s merger with Sun).
As a longtime Forté user, I’m glad to see
such exposure for its technology and I
believe it will become a key part of Sun’s
EJB solution offering.

To demonstrate how powerful current
market position is in winning the battle
for EJB server market share, let’s take a
look at Oracle Corporation and why I
believe it will prosper as a member of
the Big 4.

I assume Oracle’s server-side Java
strategy is to put an EJB server in every
Oracle database on the planet. Consid-
ering it holds the largest market share of
enterprise databases in the world, Ora-
cle could soon dominate the market in
EJB servers as well. Not convinced?
This strategy is nothing new and may
be termed gorilla marketing, a tactic
that has made more than one tech-
nology company an industry maker.
Take Microsoft, for example. It gained
major headway in the browser wars by
including its Internet Explorer browser
free on every PC.

2. TECHNOLOGY/IMPLEMENTATION BEYOND J2EE
EJB servers and tools have matured at

a rapid rate. All provide the basics such
as database connectivity, naming and
directory services, life-cycle manage-
ment and transaction management.
These services are being bundled into
the Java 2 Enterprise Edition, and, as
you may know, EJB is the foundation
upon which J2EE is built.

J2EE compliance is a must for any
application server serious about com-
peting as an enterprise Java server. Thus,
winning market share will be governed
by a vendor’s offerings in the areas of
performance and scalability. The pres-
sure is on for EJB servers to provide load
balancing and fault tolerance through
clustering or replication of components.

Even then, I don’t believe a highly scal-
able clustering architecture alone will be
enough for an application server to dom-
inate the market. The application server
must also provide an environment that is
easy to develop enterprise beans against
and one that makes deploying these
components easy. This leads to the last of
my three criteria for a successful EJB
server in the coming year.

3. RUNTIME MONITORING AND DEPLOYMENT FACILITIES
The ability to manage increasingly

complex deployment configurations will
be a deciding factor in sales of applica-
tion servers in the year to come. Suc-

cessful EJB vendors will have to provide
rich runtime monitoring tools that are
extensible, allowing you to customize
them to your application’s needs.

For instance, system administrators
need the ability to create custom system
agents that track user-defined statistics
in a graphical console environment.
Runtime monitoring capabilities will
need to allow system administrators to
chart activity, start and stop distributed
components, roll new versions of enter-
prise beans into active servers without
downtime, and even add or remove
servers from a cluster as performance
dictates.

Agents should also be autonomous,
acting on system variables automatical-
ly for the system administrator. Last,
seamlessly tying an EJB server’s moni-
toring capabilities into other enterprise
management systems such as Tivoli will
be a value-add feature that will set an
EJB server apart from the pack in Y2K.

Besides rich runtime monitoring
capabilities, I believe EJB servers that
demand developers to hand-build UNIX
scripts or .bat files for deployment will
need to advance their application man-
agement and deployment facilities to
sucessfully compete in the EJB server
race next year. Products with intuitive,
graphical deployment environments will
be the rage in the year to come as more
and more nontechnical Java developers
become Enterprise JavaBeans develop-
ers and deployers. A graphical deploy-
ment environment for components is a
strong suit of Forté’s SynerJ Application
Server and Deployer product lines.

Like the Java platform itself, Enterprise
JavaBeans is an expansive playing field
with marketable opportunities in servers,
containers, code generators, deployers,
third-party components and training.
Let’s take a gander at how a few of these
markets will evolve in the year 2000.

Business Components on the Rise in Y2K
My background is a mixture of consult-

ing and product development. For three
and a half years before I joined Verge, I
worked for the CSC Lynx Group, a prod-
uct development organization within
CSC Consulting. The business model for
the CSC Lynx Group was to produce com-
ponent-based frameworks for distrib-
uted, high-volume systems that the con-
sulting arm of the organization would use
to rapidly implement business solutions.

The CSC Lynx Group was always ahead
of its time, implementing into its frame-
works core services such as load-balanc-
ing algorithms and custom fault tolerance
that weren’t provided by the distributed
software environments or middleware
solutions available then. These services
were needed in our frameworks to pro-

vide reliability and scalability, and to
support heavy transaction volumes.
While the frameworks were imple-
mented with various technologies,
when it came time to do the same
with Java in 1998, EJB seemed to offer
most of the value-add that our frame-

works had provided in the past. The
core services we were used to building

were already handled by the EJB server.
Finally, the group was able to “get down to
business” and provide real value to clients
by developing pure business solutions!

I think next year we’ll hear much less
talk about “distributed frameworks” and
more about developing interoperable
business components. This includes third-
party business components built for a vari-
ety of e-business markets such as online
banking and securities trading. Compa-
nies are already providing business com-
ponents to rapidly develop EJB solutions. A
few to put on your radar screen are The
Theory Center (www.theorycenter.com)
and, of course, IBM’s San Francisco. More
names of companies and their compo-
nents will be added to this list in Y2K.

The demand for third-party compo-
nents will increase in 2000, and more
companies will enter this market as com-
ponent providers. However, I’m not con-
vinced that these components will truly
be considered off-the-shelf software.
Business components, no matter what
their implementation, are complex to
configure and customize without proper
guidance. Consulting and professional
services groups from the component sup-
pliers will need to provide their expertise
to properly configure and deploy their
EJBs at your organization. As server-side
business components become more
commonplace, perhaps in a few more
years, you’ll be able to buy a business
component at the local software store and
install it yourself – but not next year.

(BIG
4) 80%

EJB Marketshare

SUN

BEA

IBM

Other EJB servers 20%

ORACLE

57DECEMBER 1999

Java COM

INETSOFT
www.inetsoftcorp.com

Off-the-shelf components aren’t a
new concept. In fact, a war around
client-side components began when the
JavaBeans specification was released.
JavaBeans became a true contender for
Microsoft’s dominance of the market
with its OCX and ActiveX technologies.
Now the war has moved to a new front.
It’s moved to the server where I predict
the war for server-side components will
peak in year 2000.

Server-Side Component Model War
Escalates

Y2K will be the year that makes or
breaks Enterprise JavaBeans as the serv-
er-side component model of choice for
corporate developers. I believe there are
two competitors in this war: DCOM and
EJB. I don’t see CORBA as a solution for
new component development, but
rather a way to integrate legacy code
into new solutions built around EJB.

I admit I have some reservations
about EJB’s ability to win the war against
Microsoft’s COM/DCOM solution. COM
offers much of the same functionality as
EJB around component-based develop-
ment, and COM+ includes features such
as component replication – and load
balancing to provide fault tolerance –
allowing Microsoft solutions to scale to
an enterprise level. The caveat remains

concerning the ability of COM to oper-
ate on multiple platforms, which has
already been done on Solaris and will
soon be done on other UNIX platforms.
Regardless of COM’s strides in platform
portability, it’s unrealistic to deploy a
COM-based application into production
on anything but Windows 95 or NT.

In the end, the server-side compo-
nent model war won’t be measured by
the component model with the superior
technology that each camp will always
claim ownership of. Many top-notch
technologies have come and gone with
less success than they deserved, consid-
ering the competition – the Macintosh,
for instance. Tangible evidence, such as
the number of trained professionals and
the number of successful business
applications in production will be the
true indication of a winner in the server
component war. That said, I stress the
importance of EJB training in year 2000.

Train the Troops
I foresee many doomed EJB projects in

the coming year, and not because the
technology and tools weren’t powerful
enough or mature enough. Actually, I
suspect that most failed EJB projects will
result from a lack of EJB talent (and dis-
tributed computing experience in gener-
al). Next year, IT managers and develop-

ers alike will embrace Enterprise Java-
Beans by the hoards for its ease of use
and component-based development. A
rude awakening awaits anyone who
believes distributed components are
easy! Often, the blame for missed dead-
lines or failed projects is placed on the
technology rather than on the lack of
training or experience in it. Also, remem-
ber that training can’t sufficiently provide
what years of experience building distrib-
uted systems can; thus training from ven-
dors on their EJB products may provide a
false sense of security. Before starting
your first EJB project next year, train your
troops and hire experienced developers!

Conclusion
I look forward to seeing the impact EJB

will have on organizations and software
development as a whole in the year to
come. EJB will continue to revolutionize
enterprise development, either by itself or
alongside other technologies such as
XML and CORBA. I leave with one last
expectation about EJB in year 2000….
While the Oracle at Boulder may be
wrong on all counts above, I am sure of
one thing: Microsoft will not embrace EJB
as a server-side component model. The
war will wage on. Mark my words.

E J B H O M E

AUTHOR BIO
Jason Westra is a

managing partner with
Verge Technologies Group,
Inc., a Java consulting firm
specializing in JavaBeans

solutions. jwestra@uswestmail.net

Java COM

58 DECEMBER 1999

CYSCAPE
www.cyscape.com/free4j

59DECEMBER 1999

Java COM

IAM
www.iamx.com

Java COM

60 DECEMBER 1999

J D J F E A T U R E

The Promise of J2EE
As more business is conducted over the network, enterprises find they can

achieve more with less; they can interact with their customers and business
partners more quickly and cheaply using networked business-to-business
and business-to-consumer applications. These enterprises are conducting e-
business. J2EE promises to make e-business even more compelling by defin-
ing the means to quickly and inexpensively develop, modify and deploy
portable, easy-to-use, reliable, interoperable, scalable and secure e-business
applications. To fulfill the promise, J2EE defines the following elements:
• A platform, including a runtime environment based on industry-stan-

dard APIs and protocols, and a well-defined scheme for packaging and
deploying multitier e-business applications.

• An application programming model for developing applications that
leverage the platform.

• A compatibility test suite verifying that a J2EE platform implementa-
tion complies with the J2EE platform definition; successful comple-
tion of the test suite serves to assure application developers that their
J2EE-compliant applications will deploy and run on that J2EE plat-
form implementation.

• A reference implementation that intends to provide an operational
definition of the J2EE platform. It provides concrete answers where
the platform and application programming model definitions are
open to interpretation, and also helps popularize J2EE, serving as a
means of demonstrating the capabilities as well as a base for proto-
typing J2EE applications.

While I was writing this article, a public draft of the specification for the
J2EE platform was available, and a beta draft of the J2EE application pro-

gramming model specification and a beta version of the reference imple-
mentation had just become available. A beta form of the Compatibility Test
Suite is expected before the end of 1999. See htttp://java.sun.com/j2ee for
details.

I’ll focus on the J2EE platform and its benefits, and offer a brief look
into the application programming model. I’ll also describe an applica-
tion that demonstrates the principles of the J2EE application program-
ming model.

The J2EE Target Environment – the Middle Tier
Enterprise-class e-business applications typically exhibit multiple

logical tiers, as shown in Figure 1. Depending on the application, the
client tier may provide only a user interface or may also run some busi-
ness logic. The client communicates with the middle tier via the Inter-
net, an extranet or an intranet. The middle tier generally performs some
or all of the user interactions and runs some or all of the business logic.
The Enterprise Information Services (EIS) tier encompasses legacy or
new, business-critical data and applications that typically should be
accessed only by the middle-tier business logic – for example, databas-
es, ERP systems and transaction systems.

J2EE focuses on the middle tier, which forms the foundation of an
environment that must be secure, highly available, scalable and man-
ageable. Figure 2 shows how J2EE addresses the middle tier. A Web serv-
er, enhanced to support Java servlets and JavaServer Pages (JSP), handles
the user interaction. An application server running Enterprise JavaBeans
performs the business logic and accesses the EIS on behalf of the user.
(See http://java.sun.com/j2ee for more information about servlets, JSPs,
EJBs and other aspects of enterprise Java and J2EE.)

S
un, IBM, Novell, Oracle and nearly 50 other companies have proposed the Java 2 Platform, Enterprise Edition (J2EE) as a solu-

tion for the development and deployment of e-business applications. What is J2EE? What does it offer to developers and users

of e-business applications? This article answers these questions and provides a sample application built on J2EE principles.

J2EE
promises
the very
characteristics
needed for
inexpensive,
rapid
development
and
deployment
of e-business
applications WRITTEN BY GREG FLURRY

61DECEMBER 1999

Java COM

Figure 2 shows that J2EE allows a wide diversity of clients and protocols
between the multiple logical tiers of the e-business application. J2EE
makes recommendations, however, on the preferred application model
for clients based on business needs and customer requirements. From the
Internet or intranets, J2EE anticipates HTML and HTTP clients. The for-
mer, such as Web browsers, communicate with the Web server via HTTP or
HTTPS and send and receive only HTML for presentation to a user. HTTP
clients also communicate with the Web server via HTTP or HTTPS, but can
exchange richer information, such as XML documents. These clients
would typically be built using Java-based applets or applications. In the
intranet, although HTML and HTTP clients are preferred, J2EE also antic-
ipates IIOP clients that communicate through the application server to
interact with EJBs directly. Today such clients must be Java-based applets
or applications; future clients may include Microsoft COM objects.

The J2EE Platform
The J2EE-platform specification defines a runtime architecture for

J2EE-compliant applications and defines mechanisms for application
assembly and deployment. The J2EE runtime architecture, shown in Fig-
ure 3, makes a clear distinction between the J2EE platform – that is, the
runtime infrastructure for an application – and the application itself.
The platform consists of a set of containers: an applet container for
client-side applets, a Web container for the servlets and JSPs, and an EJB
container for the EJBs. The applets, servlets, JSPs and EJBs that consti-
tute an application are called components.

The distinction between containers and components is very impor-
tant. A container provides a standard runtime environment for a com-
ponent, that is, a set of services the component can use to accomplish a
specific task. The component services define a concrete set of applica-
tion programming interfaces that enable components of the proper type
to access underlying J2EE services. A container can therefore transpar-
ently provide enterprise-critical services such as transaction manage-
ment and security while simultaneously providing enterprise-critical
attributes such as scalability, reliability and support for multiple users.
These container properties make the task of writing components much
easier and guarantee that components written by a component provider
can be portable between J2EE platforms from different J2EE platform
providers.

The set of J2EE services provided to a component by a J2EE container
depends on the component type. The most basic applet container pro-
vides only the Java 2 Platform, Standard Edition (J2SE), which includes
JavaIDL and the JDBC base (see http://java.sun.com/products/jdk/1.2).
A more sophisticated applet container – for example, one that allows
applets to access EJBs directly – provides additional enterprise APIs,
such as JNDI and RMI/IIOP, as shown in Figure 3.

The Web container always provides the J2EE server core, which
includes J2SE and the following enterprise APIs: a JDBC extension,
RMI/IIOP, EJB client, JMS, JNDI, JTA, JavaMail and JAF. In addition, the
Web container always provides the enterprise APIs for servlets and JSPs.
The presence of JDBC requires that the Web container also provide a
database service.

Web ServerClient

EJBApplet

Applet
Container

R
M

I/
II

O
P

J
N

D
I

J2SE

EJBServletEJBJSP

Web
Container

J
N

D
I

J
T
A

R
M

I/
II

O
P

J
D

B
C

J
M

S

J2SE

Java
Mail
JAF

J2EE
Server
Core

EJBEJB

EJB
Container

Application Server

J
N

D
I

J
T
A

R
M

I/
II

O
P

J
D

B
C

J
M

S

J2SE

Java
Mail
JAF

J2EE
Server
Core

FIGURE 3 J2EE runtime environment

Client Tier Middle Tier EIS Tier

HTML
Client

IIOP
Client

HTML
Client

HTTP
Client

HTTP
Client

Web
Server

F
IR

E
W

A
L
L

F
IR

E
W

A
L
L Business-

Critical
Services
& Data

JSP

Application
Server

EJB
Servlet

FIGURE 2 J2EE solution for multitier
e-business applications

Client Tier Middle Tier EIS Tier

User
Interface

Client

Business-
Critical

Services
& DataBusiness

Logic

FIGURE 1 Generic e-business application
architecture

Java COM

62 DECEMBER 1999

The EJB container always provides the J2EE server core and the enter-
prise APIs for EJB servers. It also provides a database and a transaction
processing service to support the persistence and transactional capabil-
ities of EJBs.

Any J2EE platform must supply all the containers, services and APIs
required by the J2EE platform specification, eliminating the need for appli-
cation writers to deal with tricky integration issues. Each version of the J2EE
platform specification will require specific versions of the APIs. Future ver-
sions of the J2EE platform may require support for additional APIs.

One of the clear goals of J2EE is interoperability with a number of dif-
ferent clients. To achieve this, the J2EE platform services and APIs sup-
port a set of industry-standard communication protocols and data for-
mats. J2EE requires support for the following protocols: TCP/IP and
UDP/IP, HTTP, SSL (HTTPS), IIOP and JRMP. J2EE requires support for
the following data formats: HTML, GIF, JPEG, and Java JAR and class
files. Each version of the J2EE platform specification will require specif-
ic versions of the protocols and data formats. Future versions of the
J2EE platform will require support for additional standards, such as
XML.

Figure 4 depicts the J2EE platform specification for application
assembly and deployment. Application assembly begins with the cre-
ation of components, such as servlets, JSPs and EJBs, using the APIs, pro-
tocols and data formats mentioned above. Multiple components for the
same container type are packaged into a module that requires a module
deployment descriptor containing information on how to deploy the
components and how these components help compose an application.
The module is the smallest unit for deployment on J2EE platforms. A
J2EE application includes one or more modules and an application
deployment descriptor that describes the top-level view of an applica-
tion – all the modules and information including application-level secu-
rity roles. The final step in packaging the J2EE application is the creation
of an enterprise Java archive file.

Deployment of a J2EE application on a J2EE platform leverages the
platform’s deployment tool to dearchive the application package, exam-
ine all the modules in the application and install the various compo-
nents from the modules into the appropriate containers. Finally, the
administrator must configure the component containers with deploy-
ment-specific values for all the properties in the various deployment
descriptors, including security roles, user lists, transactional attributes
and database targets.

A significant differentiator of the platform is the capability to assign
different roles to different individuals or groups. J2EE platform
providers offer the runtime environment including containers, APIs,
enterprise services, and deployment and management tools. Compo-
nent developers can create J2EE components, packaged as modules,
that are independent of any particular platform implementation.
Application packagers can create and sell applications using compo-
nents provided by multiple component developers. A deployer installs
and configures a J2EE application so it runs correctly and securely in a
particular J2EE platform. A system administrator configures and man-

ages the J2EE platform to make sure it provides an efficient and scal-
able runtime environment for applications. Even though the lines
between the different roles may be blurred in some cases, this division
of labor made possible with the J2EE platform increases the manage-
ability of the platform itself, as well as the portability and manageabil-
ity of applications deployed on the platform. Further, it creates multi-
ple opportunities for providers of e-business applications and applica-
tion components and tools, and helps lower the cost of creating,
deploying and using e-business applications.

J2EE Application Programming Model
The J2EE application programming model (APM) recommends how

the J2EE platform specification should be applied to various application
domains to derive the maximum benefit from the J2EE platform. The
APM aims to make it easier to design manageable, deployable and main-
tainable e-business applications and get them to market quickly.

Figure 2 offers a high-level view of the J2EE APM. For the client tier of
a J2EE application, the APM focuses primarily on a client that accesses a
Web server using HTML (and later XML) over HTTP or HTTPS; however,
the APM recognizes the likelihood that intranet clients will use IIOP to
access the application server directly. In the middle-tier Web server the
application uses JSPs and servlets for various forms of user interaction
and control. In the middle-tier application server the application uses
session EJBs to represent execution objects and uses entity EJBs to rep-
resent data or application objects.

Figure 3 offers a low-level view of the J2EE APM. At a low level the
client-tier components use J2SE and perhaps some enterprise APIs to
access the middle tier. The servlets, JSPs and EJBs in the middle tier use
J2EE server core APIs and other enterprise APIs to access various enter-
prise services.

Since the APM is already defined at a high and low level by the J2EE plat-
form specification, you should consider the J2EE APM specification to be
a collection of architectural guidelines and design patterns for optimally
developing and deploying e-business applications targeted at J2EE plat-
forms. The APM specification addresses a number of issues, including:
• Using servlets for processing client requests (controller) and JSPs for

client responses (views)
• Accessing services directly or through “access objects” and “data

access objects” abstractions
• Accessing EIS resources via EJBs or directly from JSPs
• Using session or entity EJBs
• Using distributed transactions versus local transactions
• Accessing external systems with “connectors”
• Using a model-view-controller design pattern
• Using JSPs or servlets in the Web container
• Accessing services directly or through “access objects” and “data

access objects” abstractions
• Accessing EIS resources via EJBs or directly from JSPs
• Using session or entity EJBs
• Using distributed transactions versus local transactions
• Accessing external systems with "connectors"
• Applying security measures

A Sample Application – the Freeside Bank
IBM, as a supporter and contributor to J2EE, created a sample appli-

cation that demonstrates important aspects of the J2EE platform. The
Freeside Bank application, shown at JavaOne this year, is a prototypical
banking scenario that includes activities such as customer login,
account balance display and funds transfer. Freeside assumes a brows-
er-based HTML client, uses JSPs to perform user interaction, and uses
entity EJBs with container-managed persistence to represent customers
and accounts and to perform transactions. Freeside is a good approxi-
mation of a J2EE application and is useful to illustrate J2EE concepts,
even though the application was implemented before the J2SE and J2EE
specifications solidified.

J2EE Application

EJBEJB

EJB
Module

DD

EJBWeb
Servlet

HTML

Web
Module

DD

DD

DD
Java

Archive
Install
Tool

Install & Configure

Application Server

= Deployment Descriptor

Web
Container

EJB
Container

Information on
*Security * Transactional Behavior

* Database *...

FIGURE 4 J2EE application packaging and deployment

63DECEMBER 1999

Java COM

INSIGNIA
www.insignia.com

Java COM

64 DECEMBER 1999

In addition to demonstrating J2EE platform components, Freeside
introduces the useful “command” design pattern, which is somewhat
analogous to the “access object” design pattern in the APM specification.
Briefly, the command pattern calls for the user of a command bean to
instantiate the command bean, set the input parameters required to run
the command’s business logic, and then request that a command man-
ager execute the command’s business logic. The command manager
incorporates knowledge about where to run the command’s business
logic, either locally to the client of the command or remotely. In either
case, the client then locally accesses the results of the business logic exe-
cution. The command pattern presents a single model for local and
remote command execution; for remote execution, commands result in
fewer distributed method calls, greatly reducing the overhead in setting
the input parameters, executing the business logic and retrieving results.

You can download the source and executable code for Freeside from
www.developer.ibm.com/tech/integration/jsp.html. If you wish to run
Freeside, you’ll need Windows NT 4.0; JDK 1.1.6 or later; IBM’s Web-

Sphere Application Server, Advanced Edition 2.0 that includes IBM’s
HTTP Server v1.33 and IBM’s DB2 v5.2; and a Web browser (4.0 level or
higher, JavaScript-capable). You can find a free trial version of Web-
Sphere at www.software.ibm.com/webservers/download.html.

Figure 5 shows the typical actions for a client request in Freeside and gives
you a feel for how JSPs, commands and EJBs work together in a J2EE envi-
ronment. The client makes a request on a controller JSP; the controller JSP
uses a command bean to access an entity EJB with container-managed per-
sistence. The entity EJB represents information in a database. The EJB
encapsulates its information content in a data bean that the command bean
retrieves using a method on the EJB. The controller JSP extracts the data
bean from the command and stores it in the Session object for the interac-
tion. The controller JSP then redirects the client request to the display JSP,
which then extracts the data bean from the Session object and performs the
necessary activities to complete the request and display the results.

To make the description more concrete, I’ll describe the Freeside cus-
tomer-login process, starting from the Freeside “home page” (see Figure 6):

INSTANTIATIONS
ww.instantiations.com

Controller
JSP

Entity
EJB

View
JSP

Session

Command
Bean

Data
Bean

Data
Bean

Data
Bean

Data
Bean

Re
di

re
ct

Database

FIGURE 5 Freeside component interactions FIGURE 6 Freeside Bank Home Page

65DECEMBER 1999

Java COM

SD ’00 WEST
www.sdexpo.com

Java COM

66 DECEMBER 1999

• The customer presses the “Online Banking” button that invokes the
login JSP (login.jsp).

• The login JSP displays a form (see Figure 7) that collects the customer
name and password; pressing the “Login” button invokes another JSP
(doLogin.jsp). This separates user interaction from control.

• Listing 1 shows the key logic for the doLogin.jsp; it creates a Login
command, sets the customer name and password parameters for the
command, and requests that the command manager execute the
command to authenticate the customer.

• Listing 2 shows the Login command “business logic”; it first gets an EJB-
Home object for the customer entity EJB, then attempts to find the cus-
tomer in the bank’s database using the customer name input parameter
(customerLogin) as the key for the EJBHome finder method; assuming
the customer exists, the EJBHome returns a customer EJB instance; the
command then validates the password by comparing the password
parameter (customerPW) to the password in the database, obtained by
calling the getPassword() method on the Customer EJB; if the customer
is validated, the command sets the output parameter (customerData-
Bean) to the bean returned by the Customer EJB getDataBean() method.

• Listing 3 shows the ejbCreate() and getDataBean() methods for the
customer EJB; the EJBHome object for the customer EJB creates an
instance and calls the ejbCreate() method when its search for the cus-
tomer succeeds; ejbCreate() parameters are the information derived
from the database by the EJBHome finder method; the getDataBean()
method simply creates a data bean used to return customer informa-
tion in one interaction rather than multiple interactions.

• Returning to doLogin.jsp in Listing 1, if the Login command succeeds,
the JSP places the customer information returned by the Login com-
mand (and the Customer EJB) in the form of a data bean into the ses-
sion object and redirects the browser to the viewBalance.jsp to display
the account balances (see Figure 8); if the command fails, redirection
is used to redisplay login.jsp.

• The viewBalance.jsp (see Listing 4) first gets the customer information in
the form of a data bean from the session object, then retrieves account
information by creating a ViewAccounts command, setting the parame-
ters and asking the command manager to execute the command.

FIGURE 7 Freeside Bank login page

FIGURE 8 Freeside Bank account balance page

<%
String id = request.getParameter("username");
String password = request.getParameter("password");
Login loginCommand = new Login();
loginCommand.setCustomerLogin(id);
loginCommand.setCustomerPassword(password);
String urlString = JSPUtil.getBaseURL(request);

try {
loginCommand =

(Login) CommandManager.execute(loginCommand);
HttpSession session = request.getSession(true);
session.putValue("customer",

loginCommand.getCustomer());
session.putValue("transactionList",

new Vector());
response.sendRedirect(urlString +

"viewBalance.jsp");
} catch (CommandException commandException) {

response.sendRedirect(urlString +
"login.jsp?customerID=" + id);

}
%>

try {
CustomerHome customerHome = (CustomerHome)

EntityUtility.lookupHome(CustomerHome.class);

Customer customer = null;
try {

customer =
customerHome.findByLogin(customerLogin);

} catch(ObjectNotFoundException ex) {

throw new InvalidLoginException();
}
if(!customerPW.equals(customer.getPassword())){

throw new InvalidPasswordException();
}
customerDataBean = customer.getDataBean();

} catch(Exception ex) {
ex.printStackTrace();
throw ex;

}

public void ejbCreate(String login,
String password,
String name)

throws RemoteException, CreateException

{
this.login = login;
this.password = password;
this.name = name;

}

public CustomerDataBean getDataBean()
throws RemoteException

{
CustomerDataBean dataBean =

new CustomerDataBean(login, password, name);
return dataBean;

}

<%
CustomerDataBean customerInfo =

(CustomerDataBean)

Listing 4: Key logic for viewBalance.jsp

Listing 3: Excerpts from the Customer EJB (CustomerBean.java)

Listing 2: Business logic of Login command (Login.java)

Listing 1: Key logic for login controller JSP (doLogin.jsp)

67DECEMBER 1999

Java COM

THE THEORY
www.theorycenter.com

• Listing 5 shows the “business logic” for the ViewAccounts command. The
command finds an EJBHome for the account entity EJB and then finds
all the accounts for a customer using the customerID parameter as a key;
the finder returns an enumeration of account EJBs; the command puts
the data beans from all account EJBs in its output parameter (accounts).

• Listing 6 shows the ejbCreate() and getDataBean() methods for the
account EJB; the EJBHome object for the account EJB creates an
instance and calls the ejbCreate() method when its search for an
account succeeds. The ejbCreate() method sets the information
derived from the database by the finder method; the getDataBean()
method simply creates a data bean used to return account informa-
tion in one interaction rather than multiple interactions.

• Returning to viewBalance.jsp in Listing 4, if the ViewAccounts com-
mand succeeds the JSP proceeds to display the account information
for all the accounts owned by the customer.

Once Freeside has displayed the account balances, the customer can
request additional actions, such as transferring funds between the
accounts. These additional actions use JSPs, commands and EJBs in a
manner similar to that described above. The transfer action is particu-
larly interesting in that it uses several levels of JSPs calling JSPs, com-
mands calling other commands, and involves several entity EJB classes.
A detailed description is beyond the scope of this article; you can exam-
ine the Freeside source if you’re interested in learning more.

Conclusion
The J2EE platform defines a complete, machine-independent, stan-

dard environment that supports applications requiring security, reliabili-
ty, scalability, transactions and other enterprise-class attributes. The J2EE
APM builds on the productivity inherent in Java technology by offering
guidelines for quickly creating J2EE-compliant applications while offer-
ing the flexibility required by specific applications. The J2EE compatibili-
ty test suite assures that J2EE platforms, expected to come from numer-
ous vendors, offer a standard level of services and APIs for deploying

J2EE-compliant applications. This allows application vendors to create a
single application package for all J2EE platforms. Similarly, J2EE platform
vendors benefit from a greatly expanded set of applications since com-
pliant applications are guaranteed to run on their product. Platform ven-
dors, however, can differentiate based on the level of security, reliability,
scalability, tools support, legacy integration, manageability and other fac-
tors transparent to the application. These characteristics give application
vendors, platform vendors and customers a great deal of freedom of
choice and lead to lower costs for J2EE platforms and applications.

You’ve seen the promise of J2EE, but can you buy a J2EE platform and
begin developing and deploying J2EE applications? Not yet. But today
major industry players sell products, usually called application servers,
that exhibit many J2EE characteristics. You can use these application
servers to begin leveraging the advantages of J2EE. IBM’s WebSphere and
BEA’s WebLogic are examples of currently available application servers.
These companies, and many others including Bluestone, Gemstone,
Oracle and the Sun/Netscape alliance, are expected to offer J2EE-com-
pliant platforms as soon as it’s feasible. Many of the same vendors and
lots of other companies, large and small, are expected to produce plat-
form components, application components and full J2EE applications.

The e-business applications of today and tomorrow require a number
of enterprise-class characteristics and the flexibility to support varied
networked business-to-business and business-to-consumer situations.
J2EE promises the very characteristics needed for inexpensive, rapid
development and deployment of e-business applications. J2EE creates
an environment for e-business applications that allows everyone – J2EE
platform vendors, J2EE application vendors, server manufacturers, the
businesses using J2EE platforms and applications and, most important,
the end user – to win.

AUTHOR BIO
Greg Flurry, a senior technical staff member with IBM, specializes in applying enterprise-class Java
technologies to e-business applications.

Java COM

68 DECEMBER 1999

flurry@us.ibm.com

session.getValue("customer");
ViewAccounts viewAccts = new ViewAccounts();
viewAccts.setCustomerID(customerInfo.getID());
try {

viewAccts = (ViewAccounts)
CommandManager.execute(viewAccts);

Vector accounts = viewAccts.getAccounts();
%>
<!-- NOTE: HTML table setup code deleted -->
<%

for (int i = 0; i < accounts.size(); i ++) {
AccountDataBean account =

(AccountDataBean) accounts.elementAt(i);
double balance = account.getBalance();
String formattedBalance =

currencyFormat.format(balance,
new StringBuffer(),
fieldPosition).toString();

%>
<!-- some formating code deleted -->
<TR>
<TD> <%= account.getDescription() %></TD>
<TD> <%= formattedBalance %></TD>
</TR>

<%
}

} catch (Throwable e) {
e.printStackTrace();

}
%>

try {
accounts = new Vector();
AccountHome accountHome = (AccountHome)

EntityUtility.lookupHome(AccountHome.class);
Enumeration accountEn =

accountHome.findAllAccountsForCustomer
(customerID);

while (accountEn.hasMoreElements()) {
Account account =

(Account) accountEn.nextElement();
accounts.addElement(account.getDataBean());

}

} catch(Exception ex) {
ex.printStackTrace();
throw ex;

}

public void ejbCreate(double balance,
String description,
int customerID)

throws RemoteException, CreateException
{

this.canWriteChecks = false;
this.balance = balance;
this.description = description;
this.customerID = customerID;

}

public AccountDataBean getDataBean()
throws RemoteException

{
AccountDataBean dataBean =

new AccountDataBean(canWriteChecks,
balance, description, customerID);

return dataBean;
}

Listing 6: Extracts from the Account EJB (AccountBean.java)

Listing 5: The business logic of the ViewAccounts command (ViewAccounts.java)

69DECEMBER 1999

Java COM

KL GROUP
www.klgroup.com/pagelayout

J2EE is a broad specification that cov-
ers many of the elements used in building
multitier Web-based applications. The
end-user–facing tier of a multitier appli-
cation is the presentation layer. The
Servlet and JSP specifications describe a
standard methodology for building
dynamic HTML or XML pages. Other J2EE
technologies, such as JDBC and EJB,
describe standard mechanisms for
accessing data and business logic. Since
the announcement of J2EE, the Servlet
specification has been revised once (the
current version is Servlet 2.1) and another
version is in the process of being
reviewed. (Servlet 2.2 is currently avail-
able for public review at http://java.sun.
com/products/servlet/.)

The broad enterprise application
view taken by J2EE has driven exten-
sions and enhancements to the Servlet
and JSP specifications. The most impor-
tant of these is the introduction of the
“Web Application” concept, which rec-
ognizes that it’s necessary but not suffi-
cient to describe how a single servlet
should operate. It’s also important to
describe how all components of an over-
all application relate to each other.

A typical Web application comprises a
collection of static content (e.g., HTML
pages, sounds and images) and a collec-
tion of dynamically generated pages and
images. A Web application also requires
management of security, state informa-
tion in various scopes (e.g., application-
wide, per-client session and per servlet)
and the isolation of applications and their
resources from each other within a server.
By taking this broad view of an applica-
tion, the Servlet 2.2 specification provides
a complete programming model for
dynamic-content elements within the
context of an entire application.

Java Server Pages are a complement to
servlets. The goal of JSP is to separate the
visual aspects of a Web page from the

programmatic aspects. A Web-page
designer can focus on laying out the most
beautiful HTML and simply use custom
HTML tags to identify the areas of
dynamic content. At the same time, a
professional Java programmer can write
the actual code and business logic that’s
executed to provide the dynamic content
to the page. The current version of the JSP
specification is 1.0, and a public draft for
the 1.1 specification is now available. The
remainder of this article will focus on the
Web application model as introduced in
Servlet 2.2. For more information on JSP
see http://java.sun.com/products/jsp/.

Web Application Development
From the developer’s point of view, a

Web application consists of the follow-
ing components:
• Servlets and JSPs for generating

dynamic content
• Utility Java classes used by servlets

and JSPs
• Static documents (HTML pages,

images, sounds, etc.) that may be
directly URL-accessible and served
directly by the Web server (alterna-
tively, these documents may be
accessed as part of a servlet’s dynam-
ic processing)

• Client-side Java applets, JavaBeans
and utility classes (not discussed in
this article)

• An XML application descriptor file

These components are packaged in an
archive file called a .WAR file (Web Archive).

Web Application Deployment
A Web application (packaged in its

.WAR file) is deployed to a “Web Con-
tainer,” available in many Web server
products as well as in all J2EE-based
Web Application Servers. The Web con-

tainer provides the environment in
which a servlet operates. Upon deploy-
ment it’s responsible for appropriately
adding the contents of the .WAR file to
the URL space of its HTTP server.

The XML descriptor file contains the
configuration and deployment informa-
tion that makes this possible. The
descriptor file includes information for
design tools, deployment tools and
details used at runtime by the Web con-
tainer, including security information.

SECURITY
Consistent with the EJB specification,

a Web application can define a set of log-
ical security roles that are enumerated as
part of the descriptor file. They’re used to
control access to any of the servlets in
the application as well as any of the stat-
ic resources. In addition, a servlet may
dynamically check on whether the cur-
rent user is in a particular role.

When the Web application is being
deployed, the roles defined in the appli-
cation must be mapped to actual users
and groups.

URL MAPPING
The descriptor file enumerates the

servlets that are part of the application.
For each servlet there’s a mapping from
one or more URL patterns to that
servlet. For example, the following
excerpt defines a servlet named “cata-
log” and the fully qualified name of the
class that should be loaded. All other ref-
erences to the servlet use the name.

<servlet>

<servlet-name>catalog</servlet-name>

<servlet-class>com.mycorp.Cata-

logServlet</servlet-class>

</servlet>

The following excerpt specifies that
for the servlet named catalog any

WRITTEN BY
ARNY EPSTEIN

Java Servlet 2.2 Introduces the Web Application

T
he philosophy behind the Java 2 Enterprise Edition (J2EE)
announced at JavaOne in June 1999 is to package the Java
2 platform with a collection of “Enterprise APIs,” including
Servlet and Java Server Pages (JSP), and an application
programming model to define a standard platform upon
which enterprise applications can be built.The first public
release of the J2EE specification became available in Octo-
ber 1999, and a final draft is expected this month (see
http://java.sun.com/j2ee/).

W E B A P P L I C A T I O N A R C H I T E C T U R E

It’s literally the tip of the iceberg in building an enterprise application

Java COM

70 DECEMBER 1999

71DECEMBER 1999

Java COM

ELIXIR
www.elixirtech.com/

Java COM

72 DECEMBER 1999

request to a URL that begins with “/cat-
alog/” should be delivered to this
servlet. In other words, the servlet is
written to make /catalog appear to be a
directory hierarchy.

<servlet-mapping>

<servlet-name>catalog</servlet-name>

<url-pattern>/catalog/*</url-pat-

tern>

</servlet-mapping>

Web Application Runtime
The Web container is responsible for

managing the runtime behavior of the
components of the Web application (see
Figure 1). The servlet API defines the
contract between the Web container and
the servlet objects that are deployed in
it. The Web container must:
• Provide an application-wide context

object
• Map URL requests within its root URL

space according to the application
descriptor information

• Create and manage client sessions
• Directly deliver URL-accessible static

content
• Invoke servlets to deliver dynamic

content

JAVAX.SERVLET.SERVLETCONTEXT
To represent the running Web appli-

cation, the servlet container creates an
instance of javax.servlet.ServletContext.
This ServletContext object, available to
each servlet within the application, pro-
vides three functions.
1. It gives a servlet access to other

resources (HTML pages, images, etc.)
within the application’s .WAR file via
the getResource and getResource-
AsStream methods.

2. It’s the manager of application-wide
state information via the get/setAt-
tribute methods.

3. It’s a factory for javax.servlet.Request-
Dispatcher objects. The RequestDis-
patcher is used by one servlet to
invoke another servlet from within
the same application. This allows a
servlet to delegate its processing to a
different servlet (forwarding) or to ask
another servlet to provide a piece of
the response (inclusion).

JAVAX.SERVLET.HTTP.HTTPSESSION
To represent a client HTTP session, the

Web container creates an instance of
javax.servlet.http.HttpSession. This object is
used by a servlet to store state information
that’s per-client. The Servlet specification
doesn’t explain how a Web container should
identify a session. Two common mecha-
nisms are used for session identification:
cookie-based and URL rewriting (cookie-

less). In addition, HTTP over SSL (HTTPS
protocol) is inherently session based. In the
case of an HTTPS session, the Web contain-
er makes the X509 certificate information
available as a Request attribute.

JAVAX.SERVLET.SERVLET
A servlet is a Java class that imple-

ments the javax.servlet.Servlet interface.
The purpose of a servlet is to generate
dynamic content. It interacts with
clients using a Web-style request-
response mechanism based on the
behavior of the HTTP protocol. (Note:
The Servlet specification is protocol
independent, but at least the HTTP pro-
tocol is required. For the purposes of
this article, HTTP will be assumed.) At
runtime a JSP behaves exactly like a
servlet. In fact, most JSP hosts precom-
pile a JSP into a compiled servlet.
Throughout this article, wherever the
term servlet is used, the phrase servlet or
JSP can be substituted.

When a servlet is selected to process a
request, its “service” method is invoked
by the RequestDispatcher. The service
method accepts two parameters: a
Request object and a Response object.
The servlet uses the information provid-
ed in the Request object and the Servlet-
Context to determine what dynamic
content is to be generated.

JAVAX.SERVLET.SERVLETREQUEST
When a client request received by the

server requests a servlet, an instance of
the servlet is passed an object that
implements the javax.servlet.ServletRe-
quest interface. For HTTP-based clients,
the object must implement javax.serv-
let.http.HttpServletRequest. The Re-
quest object provides all the informa-

tion delivered from the HTTP client
including parameters, headers, path ele-
ments and attributes.

Request parameters are obtained
from the request query string (following
the “?”) and from HTML form data (in
the case of an HTTP POST). Parameter
information is provided by the end user
or the application itself. For example,
the request string www.mysite.com/
here/there/now.html?a=10&b=no-way
specifies two request parameters with
the names “a” and “b” and correspond-
ing values of “10” and “no-way.”

Request headers, a standard part of
the HTTP and other Internet protocols,
are generated by the HTTP client pro-
gram or user agent, usually a browser or
client-side Java program. An example of
a request header is “User-Agent.” The
value of this header for Netscape Navi-
gator 4.5 is “Mozilla/4.6 [en] (WinNT; I)”.
To properly use request headers, the
programmer must have a working
knowledge of the HTTP 1.1 protocol.

Request-path elements are pieces of
the entire request path broken down
functionally (from left to right) into
three parts. First is the “Context Path,”
which is the path to the root URL of the
Web application. Second is the path
from the root URL of the Web applica-
tion to the servlet itself. (Mapping of
URLs to servlets is defined by the appli-
cation descriptor file.) The third part of
the path is the “Extra Path Info” that’s
interpreted by the servlet.

For example, a .WAR file is deployed
as follows:
• Application root: “/here”
• The application descriptor maps the

path “/there/fancy.blah” to the servlet
“MyServlet”

Static Content
*.gif, *.html
*.wav, etc.

Developer-provided
components

Services provided by
the Web Container

Objects specified in the Servlet specification
that are available to a running Servlet

RequestDispatcher
(Used to forward or include)

Data and
Business
Objects

EJB
JDBC
other

Servlet

ServletRequest

M
ap

 U
RL

Co
lo

r K
ey

Au
th

en
tic

at
e

ServletResponse

HttpSession
(per-client state)

Servlet Context
(Application-wide state)

{
FIGURE 1 Web application container

W E B A P P L I C A T I O N A R C H I T E C T U R E

73DECEMBER 1999

Java COM

RIVERTON
www.riverton.com

W E B A P P L I C A T I O N A R C H I T E C T U R E
A request for “/here/there/fancy.blah/

more/and/more” then delivers to “My-
Servlet” the following three path ele-
ments:
1. Context path: “/here”
2. Servlet path: “/there/fancy.blah”
3. Extra path: “/more/and/more”

Attributes are information represent-
ed as name-value pairs and are internal
to the application. A typical use for
Request attributes is to pass parameters
from one servlet to another when a
request is being forwarded.

JAVAX.SERVLET.SERVLETRESPONSE
The response object, which imple-

ments the javax.servlet.ServletResponse
interface, is used to encapsulate all
information to be returned to the client.
The Request object allows the servlet to
set the return status (e.g., 200 OK, 404
Not Found, 304 Not Modified, etc.),
response headers and the actual content
(HTML, text, image, etc.).

New in Servlet 2.2, the Response
object has additional methods that
enable the servlet to control buffering
of the response. This enhancement will
greatly improve performance and
reduce heap usage by enabling a
servlet to indicate that it knows the size
of its content and doesn’t need any
buffering.

SERVLET REQUEST PROCESSING
The real work of a servlet, of course, is

to process a client request and generate
dynamic content. The servlet specifica-
tion includes three features that enable
a flexible component-based implemen-
tation of an application.

FORWARD
A servlet may forward-process a

request to another servlet. This capabil-
ity can be accomplished using HTTP
redirection, but forwarding is much
more efficient because the network
round-trip is avoided and Java objects
may be passed between the servlets as
Request attributes (avoiding the need to
encode complex state information).

A useful application of forwarding is
to report errors detected during servlet
processing.

INCLUDE
A servlet may include the generated

output of another servlet. This is useful
for common design elements like navi-
gation bars or for encapsulating the
complex generation of table-based
results that may be displayed in many
page contexts.

ERROR HANDLING
Good error handling and reporting

are important to building a user-friend-

ly application. A Web application has an
error-handling page that’s invoked
when an uncaught exception is thrown
during servlet processing. This page
ensures that the Web container will
recover gracefully from unexpected
application errors. The Web container
provides an error-handling page by
default, but the application can specify
error pages to handle specific HTTP
errors or Java exceptions.

Conclusion
In this article we’ve provided an

overview of the Web application archi-
tecture as introduced by the upcoming
Servlet 2.2 specification. Driven by J2EE,
the Servlet and JSP-based Web applica-
tion is literally the tip of the iceberg in
building an enterprise application. It’s
the part you see, but there’s much more
underneath that’s seamlessly integrated.
The rest of the J2EE technologies, such
as JDBC, JTA, JMS, EJB and JavaMail, are
the workhorses that provide the dynam-
ic data and business processes that a
Web application presents to the user.
The Servlet 2.2 specification is a giant
step in the creation of a well-integrated,
top-to-bottom platform for building
enterprise applications.

Java COM

74 DECEMBER 1999

aepstein@silverstream.com

INSLAND B
www.instantdb.co.uk

AUTHOR BIO
Arny Epstein, chief

technology officer and a
cofounder of SilverStream,

holds a Ph.D. in astro-
physics from MIT.While at
the Harvard-Smithsonian

Center for Astrophysics,
Arny contributed to the

creation of data-analysis
techniques in the field of

experimental X-ray
astronomy.

75DECEMBER 1999

Java COM

PROTOVIEW
www.protoview.com

WRITTEN BY
JIM MILBERY

Fall Internet World

T
here’s nothing better than a technology trade show in
New York City in the fall.While leaves may be gently falling
from the trees in New England, the movers and shakers of
the Internet gather like so many Gordon Geckos to plot
strategy, change the world and otherwise meet and greet
the masses in the city that never sleeps.

S H O W R E P O R T

Java COM

76 DECEMBER 1999

Having spent years as a sales consul-
tant for a variety of high-tech vendors, I
always feel a slight trepidation when I
cross the threshold onto the exhibitor’s
floor. For a sales consultant the trade
show floor is one long line of unqualified
prospects filling their trick-or-treat
floorshow bags with giveaway goodies
and looking for a quick demo. The booth
is either filled with eager faces or a ghost
town – there’s no middle ground.
Attending one of these things as a civil-
ian is a lot more fun, take my word for it.
Thanks to JDJ, I was able to skirt the long
line at the day-pass registration booth
using my VIP pass. Like a celebrity hop-
ping the line at the old Studio 54, I was
invited to duck under the velvet rope
and make my way to the registration
area without waiting.

The registration process itself was
very disappointing. I like the idea of self-
registration, but asking attendees of an
Internet show to fill out registration
forms using green-screen terminals is
ridiculous (see Photo 1). Don’t get me
wrong. I’m not advocating the destruc-
tion of terminals, and there are applica-
tions in which terminals still make
sense. It’s just that a trade show for the
Internet is the wrong venue for them.
While I’m sure the registration people
are armed with statistics about how effi-
cient the registration process was (blah,
blah, blah), most of the people I spoke
with were very frustrated by the termi-
nal-based data-entry screens. Forget the
fact that most of the registration process
consisted of answering a series of self-
serving demographic questions, the
application itself was difficult to use. In
the age of the Internet many people
aren’t familiar with terminal-based
applications – and I find it hard to
believe that a few PC vendors couldn’t
be strong-armed into providing enough
computers for browser-based registra-
tion. Many of the end users I talked to
had never even seen a nondestructive
delete-key in action, and they had lots of

trouble with the application as a result.
(By the way, guys, frustrated users rarely
give you accurate answers to all those
pithy demographic questions.) Internet
World has grown into a conference for
all Web constituents, not just develop-
ers. If you want businesspeople and end
users to attend this type of event, you
can’t ask them to use technology that’s
completely unfamiliar to them when
they register.

Automated registration processing is
a good thing and I’m sure it saves people
a ton of time. At a show like Internet
World, however, the registration appli-
cation should be browser-based and
come equipped with adequate help and
automated assistance.

A “United Nations” of Technology
Despite the hiccups with the registra-

tion process, the show itself was terrific.
While Comdex may have gotten out of
hand, Internet World is just the right size
– despite the fact that the exhibition
area itself is split between two floors.
The show is truly a United Nations of

technology, with representatives from
all facets of computing and the Internet.
While the keynote speeches and break-
out sessions tend to capture most of the
press, the exhibition floor is where the
real action is, with everything you need
to conceive and build a Web site or
Internet application.

While it might be difficult for the
novice to figure out all the pieces of the
puzzle without some help, the fact
remains that everything you need lies
right there in the hall of vendors. What is
truly incredible is the vast array of differ-
ent technologies gathered under one
roof. From telecom to online banking
and from computer games to profes-
sional liability insurance for Web devel-
opers – Internet World has it all. While
shows like JavaOne provide developers
with a focused environment for study-
ing and discussing technology, Internet
World provides a more global and holis-
tic approach to the Internet in general.

One of the continuing mantras for
developers and information technology
staff is that they should keep close with
the needs of the end user. There’s no bet-

A report on the trade show held recently in New York City

PHOTO 1 The green-screen registration area

77DECEMBER 1999

Java COM

JAVA BUS. EXPO
www.javabusinessconference.com

S H O W R E P O R T

SLANG SOFT
www.slangsoft.com

Java COM

78 DECEMBER 1999

AUTHOR BIO
Jim Milbery is an

independent software
consultant based in

Easton, Pennsylvania. He
has over 15 years of

experience in application
development and

relational databases.You
can visit Jim’s Web site at

www.kuromaku.com.

ter place for understanding how users
are viewing and interacting with tech-
nology and the Internet than this forum.
Exposing developers to the complete
view, including end-user applications of
Java technology, reap untold benefits in
terms of mutual understanding.

Even with the increased focus on
such things as e-commerce and cus-
tomer-resource management, it’s clear
that the critical item on everyone’s
agenda is content and content manage-
ment. Many of the products I looked at
were geared toward handling content
and getting information published into
Web portals – a key issue for corpora-
tions and dotcom companies alike. Por-

tal-based applications allow corpora-
tions to get information disseminated
among their many employees and divi-
sions and customers courtesy of
intranets and extranets. Although we
have a history in the IT business of
jumping onto too many bandwagons as
the “next big thing,” this seems to be
one strategy with some real legs to it.
For the dotcom set, portal-based appli-
cations are the lifeblood of their busi-
ness. Organizing and personalizing
content means the difference between
winning and losing for these compa-
nies. What’s really interesting is that a
show like Internet World can service
both constituencies so well. I’d have no
trouble crafting together a complete
solution for the corporate marketplace
or the dotcom marketplace with the
vast array of products on display there.
Everything from bandwidth and server
hosting to customer service applica-
tions were to be found on the show
floor. While many of these solutions are
Java-based products, the emphasis at
this show was less on the underlying
technologies than on solving the bigger
problem. Java Server Pages and XML are
what Web developers are talking about
these days, but the focus of Internet
World was the end result of using these
technologies, rather than the technolo-
gy itself.

Some Specialties
While it’s not my place to hand out

awards and endorse products, I do have to
mention a few things that caught my eye.
First off, you have to love the idea of having
a Christmas-themed booth complete with
packs of roving Santa Clauses (all of whom
had New York accents) at a technology
trade show (see Photo 2). One of the great
things about the Internet is the way it has
fused the interests of stuffy corporations,
technical developers and creative types.

Take Abject Modernity as an example.
Buried among the telecom providers, devel-
opment tools and CRM applications was
this clever little company out of Canada
with their intriguing game “The Stone.” The
Stone itself is a sort of game device that you
use to solve a series of puzzles in the grand
hope of learning the secret of the Enigma.
Once you buy your Stone, you can register it
on the Web site – provided that you can fig-
ure out the secret registration code hidden
in the booklet. Now that’s just plain fun, and
it’s nice to see that while the Internet is grow-
ing up into serious business, we can still have
fun with it. If you want the scoop on techni-
cal Java topics go to JavaOne or the Java Busi-
ness Conference – but Internet World
remains the one spot where you can find
everything else under the Internet sun.

PHOTO 2 Santa’s Internet workshop

jmilbery@kuromaku.com

79DECEMBER 1999

Java COM

9NETAVENUE
www.9netave.net

Java COM

80 DECEMBER 1999

that are not bean properties. The “name” is the
name that JBuilder will give the Clock variable
in the code that it generates. “Constraints”
refers to the layout constraints used when the
Clock component is added to its container.

The custom ClockCustomizer looks a lot like it
did in the BeanBox. It’s displayed by right-click-
ing on the Clock component and selecting Cus-
tomizer from the popup menu. JBuilder’s version
of the ClockCustomizer is shown in Figure 8.

JBuilder also has a design view that shows
the user interface component tree. In this view
JBuilder shows the Clock bean contained with-
in a JPanel (see Figure 9). Here it used the 16x16
color icon that I specified in ClockBeanInfo.

Debugging a Customizer
This example is a simple customizer, but for

a complicated customizer it might be neces-
sary to use a debugger to get it working just
right. Once the bean and customizer are
loaded into an IDE, it can be pretty difficult to
find and fix problems. Sometimes even the
time-tested method of adding System.out mes-
sages won’t work because there is no console to
print to. I’ve found that it’s worth taking the
time to write code that can be used to test cus-
tomizers outside of an IDE. That way I can use
System.out or a debugger to see what the cus-
tomizer is doing. This simple code loads a bean
and its customizer into two windows so they
can be tested and debugged.

Clock c = new Clock();

JFrame f = new JFrame(“Bean”);

f.getContentPane().add(c);

f.pack();

f.show();

ClockCustomizer cust = new ClockCustomiz-

er();

f = new JFrame(“Customizer");

f.getContentPane().add(cust);

f.pack();

f.show();

cust.setObject(c);

Figure 10 shows what the test harness looks like.
This simple test harness can make debug-

ging a customizer much easier. Insert this code

into the main() method of the customizer for a
built-in test capability. With a little additional
code this test driver could also be used to test
bean serialization and event handling.

Using custom property editors and cus-
tomizers are great ways to make your beans
more usable by application developers regard-
less of what development tools they use. Take
the time to include these features in your
beans and your users will thank you for it.

AUTHOR BIO
William Wright is a senior software engineer with GTE Corporation in
Arlington, Virginia. He has 10 years’ experience with real-time systems
development and object-oriented programming.

FIGURE 7 JBuilder uses the ShortDescription text.

FIGURE 10 The Customizer test harnessFIGURE 8 The Clock Customizer in JBuilder

package mybeans;

import java.awt.*;
import java.util.*;
import java.text.*;
import javax.swing.*;
import java.io.*;

public class Clock extends JLabel
implements Runnable, Serializable{

DateFormat formatter12;
DateFormat formatter24;
private boolean running;
private boolean isTwentyFourHourTime;

public Clock() {
formatter12 =
new SimpleDateFormat("h:mm:ss a");

formatter24 =
new

SimpleDateFormat("H:mm:ss");
setRunning(true);

}

public void run() {
while(running)
{
if (isTwentyFourHourTime())
this.setText(
formatter24.format(new Date()));

else
this.setText(
formatter12.format(new Date()));

try {
Thread.sleep(1000);

}
catch (InterruptedException e) {}

}
}

// The running property should be hidden
public void setRunning(boolean newRun-
ning) {

boolean oldRunning = running;
running = newRunning;
Thread t = new Thread(this);
t.start();
firePropertyChange("running",

new Boolean(oldRunning),
new Boolean(newRunning));

}

public boolean isRunning() {
return running;

}

// The twentyFourHourTime property
// should be exposed
public void setTwentyFourHourTime(

boolean newTwentyFourHourTime) {
boolean oldTwentyFourHourTime =

isTwentyFourHourTime;
isTwentyFourHourTime = newTwenty-
FourHourTime;
firePropertyChange("twentyFourHourTime",

new Boolean(oldTwentyFourHourTime),
new Boolean(newTwentyFourHourTime));

}

public boolean isTwentyFourHourTime() {
return isTwentyFourHourTime;

}
}

package mybeans;

import java.beans.*;

public class ClockPropertyEditor

extends PropertyEditorSupport {

private boolean is_24 = false;

public ClockPropertyEditor() {
}

public String getAsText() {
return (is_24 ? "24 hour" : "12
hour");

}

public Object getValue() {
return new Boolean(is_24);

}

public void setAsText(String value)
throws IllegalArgumentExcep-

tion {
if (value.equals("24 hour"))

setValue(new Boolean(true));
else if (value.equals("12 hour"))

setValue(new Boolean(false));
else

throw new IllegalArgumentExcep-
tion(

"Unrecognized value: "
+ value);

}

public void setValue(Object value) {
Boolean b = (Boolean)value;
is_24 = b.booleanValue();
firePropertyChange();

}

public String[] getTags() {
String [] tags = {"24 hour", "12

hour"};
return tags;

}
}

Listing 2: The Property Editor

Listing 1: The Clock Bean

JavaBeans Customized. . . continued from page 12

FIGURE 9 The Clock bean in the JBuilder designer

wwright@bbn.com

81DECEMBER 1999

Java COM

SOFTWARE
INSTRUMENTS

www.so-in.com

Java COM

82 DECEMBER 1999

package mybeans;

import java.beans.*;

public class ClockBeanInfo
extends SimpleBeanInfo {

public ClockBeanInfo() {
}

public
PropertyDescriptor[] getPropertyDescriptors() {

try {
// PropertyDescriptor for the
// "twentyFourHourTime" property
PropertyDescriptor pd1 =

new PropertyDescriptor(
"twentyFourHourTime",
Clock.class,

"isTwentyFourHourTime",
"setTwentyFourHourTime");

pd1.setDisplayName("Time Format");
pd1.setShortDescription(

"Controls whether the time is "+
"displayed in 12 or 24 hour mode");

pd1.setBound(true);
pd1.setPropertyEditorClass(

ClockPropertyEditor.class);

// PropertyDescriptor to hide the
// "running" property
PropertyDescriptor pd2 =

new PropertyDescriptor(
"running",
Clock.class,
"isRunning",
"setRunning");

pd2.setHidden(true);

PropertyDescriptor[] pds = new PropertyDescriptor[]
{pd1, pd2};

return pds;
}
catch(IntrospectionException ex) {

return null;
}

}

public BeanDescriptor getBeanDescriptor() {
return new BeanDescriptor(

Clock.class,
ClockCustomizer.class);

}

public java.awt.Image getIcon(int iconKind) {
switch (iconKind) {

case BeanInfo.ICON_COLOR_16x16:
return loadImage("Clock16x16Color.gif");

case BeanInfo.ICON_COLOR_32x32:
return loadImage("Clock32x32Color.gif");

case BeanInfo.ICON_MONO_16x16:
return loadImage("Clock16x16Mono.gif");

case BeanInfo.ICON_MONO_32x32:
return loadImage("Clock32x32Mono.gif");

}
return null;

}

public BeanInfo[] getAdditionalBeanInfo() {
Class superclass = Clock.class.getSuperclass();
try {

BeanInfo superBeanInfo =
Introspector.getBeanInfo(superclass);

return new BeanInfo[] { superBeanInfo };
}
catch(IntrospectionException ex) {

return null;
}

}
}

package mybeans;

import java.awt.*;
import java.beans.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

public class ClockCustomizer extends JPanel
implements Customizer{

protected Clock theClockBean = null;
private JRadioButton button24 =

new JRadioButton("24 Hour Mode");
private JRadioButton button12 =

new JRadioButton("12 Hour Mode");

public ClockCustomizer() {
JLabel topLabel = new JLabel();
topLabel.setFont(

new java.awt.Font("Dialog", 1, 20));
topLabel.setHorizontalAlignment(

SwingConstants.CENTER);
topLabel.setText(

"This controls the mode of the clock");
this.setLayout(new BorderLayout());
button24.addChangeListener(

new ChangeListener() {
public void stateChanged(ChangeEvent e) {

button24Changed(e);}});
this.add(topLabel, BorderLayout.NORTH);
JPanel radioPanel = new JPanel();
this.add(radioPanel, BorderLayout.CENTER);
radioPanel.add(button24, null);
radioPanel.add(button12, null);
ButtonGroup grp = new ButtonGroup();
grp.add(button12);
grp.add(button24);
button12.setSelected(true);

}

public void setObject(Object bean) {
theClockBean = (Clock)bean;
button24.setSelected(

theClockBean.isTwentyFourHourTime());
}

void button24Changed(ChangeEvent e) {
theClockBean.setTwentyFourHourTime(

button24.isSelected());
}

}

Listing 4: The Clock Customizer

Listing 3: The ClockBeanInfo Class

GEEK
CRUISES

www.geekcruises.com

Java COM Java COMJava COM

JDJ Store
www.jdjstore.com

Java COM

ObjectSpace
Releases DXML
(Dallas, TX) – ObjectSpace
has announced the availabil-
ity of Dynamic XML 1.0 for
Java,
which is
said to
simplify
XML development by allow-
ing developers to create, write
and read XML documents as
if they were standard Java-
Beans. DXML is available free
to Java developers.
www.objectspace.com

JRun to Power In-Store
Kiosks for Home Depot
(Cambridge, MA) – Home
Depot, the huge home
improvement retailer, has
chosen Allaire JRun to
power its in-store informa-
tion kiosks.

According to Ron
Griffin, CIO of Home
Depot, “We were
looking for a
solution that
would enable
us to deliver
product and
vendor information quickly
and efficiently to our cus-
tomers.…JRun provides the

most flexibil-
ity and per-
formance.
And it
enables us to
maximize
our physical

‘floor space’ while providing
robust and easy-to-use infor-
mation kiosks for our cus-
tomers.”
www.allaire.com

New Vice President
at Insignia Solutions
(Fremont, CA) – Mark
McMillan has joined
Insignia Solutions as senior
vice president of worldwide
sales and marketing. McMil-
lan comes to Insignia from
Phoenix Technologies, where
he was VP of sales for the
company’s Internet division.

In his new role McMillan
will be responsible for manag-
ing Insignia’s worldwide sales
and marketing organization,
including direct and OEM
sales, product and sales strat-
egy, positioning, business
development, product mar-
keting and communications.
www.insignia.com

IBM Names Java VP
(White Plains, NY) – IBM has
selected Rod Smith as its new
vice president for Java. He
replaces Pat Sueltz, who
joined Sun Microsystems in
September.

Smith was IBM’s chief tech-
nology officer for Java and has
worked closely with Sun,
especially on embedded Java,
for which standards aren’t yet
established. Smith’s appoint-

ment is expect-
ed to be good
news for Java
because Sueltz

and Smith have worked well
together in the past. IBM has
played a pivotal role in
supporting Java while
at the same time push-
ing Sun to keep Java
open. Smith said his
priorities are to “keep IBM’s
full focus on Java going and to
keep the team together.”
www.ibm.com

TOPLink for BEA WebLogic
Server Launched
(San Jose, CA) – BEA Systems
Inc. and The Object People
have launched TOPLink for
BEA WebLogic Server. Cus-
tomers building
e-commerce
applications
using
enterprise
Java standards
can now map and transpar-
ently store Enterprise Jav-
aBeans in object relational
databases, thereby reducing
application development time
by 40% or more.
www.beasys.com /
www.objectpeople.com

PointBase to Bundle
Database with
Symantec’s VisualCafé
(San Mateo, CA) – PointBase,
Inc., will bundle the Point-
Base 100% Pure Java relation-
al database with future
releases of Symantec’s Visual-
Café. VisualCafé applications
written with PointBase’s stan-
dards-based Java relational

database
can now be
migrated to
any corpo-
rate data-

base system that supports
both SQL and JDBC.
www.pointbase.com /
www.symantec.com

JDJ
WWW.

SYS-CON

.COM

84 DECEMBER 1999

InstallShield Introduces
Java Edition 3.0
(Schaumburg, IL) – Install-
Shield Software Corporation
has released InstallShield
Java Edition (ISJE) 3.0, the
newest version of its true
cross-platform installation
authoring tool for multiplat-
form software developers.
ISJE’s new features and
robust functionality claim to

give developers increased
control and customization
over their installations while
providing an intuitive “Win-
dows-like” installation expe-
rience, thus reducing confu-
sion and the learning curve
often associated with
installing non-Windows soft-
ware applications. ISJE 3.0 is
also said to enhance installa-
tion and deployment to the
Solaris operating environ-
ment by leveraging Web Start
Wizard technology jointly
developed by InstallShield
and Sun.
www.installshield.com

85DECEMBER 1999

Java COM

VISUALIZE
www.visualizeinc.com

DEVELOP
MENTOR

www.develop.com/courses/ijava.htm

ADVERTISER URL PH PG

4TH PASS WWW.4THPASS.COM 877.484.7277 17

9NETAVENUE, INC. WWW.9NETAVE.NET 888.9NETAVE 79

AFFINIA WWW.AFFINIA.COM 650.404.9944 101

AMERICAN CYBERNETICS WWW.SOFTEXPORT.COM 800.899.0100 43

APPLIED REASONING WWW.APPLIEDREASONING.COM 800.260.2772 35

BEA WEBLOGIC WWW.WEBLOGIC.BEASYS.COM 800.817.4BEA 2

BLUE SKY SOFTWARE WWW.BLUE-SKY.COM 800.559.4423 15

CAREER CENTRAL WWW.CAREERCENTRAL.COM/JAVA 888.946.3822 44

CAREER OPPORTUNITY ADVERTISERS 800.846.7591 87-100

CERTIFY ON-LINE WWW.CERTIFYONLINE.COM 877.JAVA YES 16

COMPUWARE NUMEGA WWW.COMPUWARE.CON/NUMEGA 800.4.NUMEGA 6

CYSCAPE WWW.CYSCAPE.COM/FREE4J 800.932.6869 58

DEVELOPMENTOR WWW.DEVELOP.COM 800.699.1932 85

ELIXIR TECHNOLOGY WWW.ELIXIRTECH.COM/DOWNLOAD/ 65 532.4300 71

ENTERPRISESOFT WWW.ENTERPRISESOFT.COM 510.742.6700 11

FIORANO SOFTWARE, INC. WWW.FIORANO.COM 408.354.3210 39

GEEK CRUISES WWW.GEEKCRUISES.COM 650.327.3692 82

IAM CONSULTING WWW.IAMX.COM 212.580.2700 59

INETSOFT TECHNOLOGY CORP WWW.INETSOFTCORP.COM 732.235.0137 57

INSIGNIA SOLUTIONS, INC. WWW.INSIGNIA.COM 800.848.7677 63

INSTANTDB WWW.INSTANTDB.CO.UK 74

INSTANTIATIONS INC. WWW.INSTANTIATIONS.COM 800.808.3737 64

INTUITIVE SYSTEMS, INC. WWW.OPTIMIZEIT.COM 408.245.8540 55

JAVA BUSINESS CONFERENCE WWW.JAVABUSINESSCONFERENCE.COM 888.886.8309 77

JAVA DEVELOPER’S JOURNAL WWW.JAVADEVELOPERSJOURNAL.COM 914.735.0300 86

JDJ STORE WWW.JDJSTORE.COM 888.303.JAVA 83

KL GROUP INC. WWW.KLGROUP.COM/TRACK 888.328.9597 13

KL GROUP INC. WWW.KLGROUP.COM/PAGELAYOUT 888.328.9599 69

KL GROUP INC. WWW.KLGROUP.COM/FIELD 888.328.9596 104

METAMATA, INC. WWW.METAMATA.COM 510.796.0915 51

NEW ATLANTA WWW.NEWATLANTA.COM/ 678.366.3211 47

OBJECT DESIGN WWW.OBJECTDESIGN.COM/JAVLIN 800.962.9620 52-53

OBJECTSWITCH CORPORATION WWW.OBJECTSWITCH.COM/IDC35/ 415.925.3460 29

POINTBASE WWW.POINTBASE.COM/JDJ 877.238.8798 41

PRAMATI WWW.PRAMATI.COM/J2EE.HTM 914.876.3007 23

PROTOVIEW WWW.PROTOVIEW.COM 800.231.8588 3

PROTOVIEW WWW.PROTOVIEW.COM 800.231.8588 75

QUICKSTREAM SOFTWARE WWW.QUICKSTREAM.COM 888.769.9898 30

RIVERTON SOFTWARE CORPORATION WWW.RIVERTON.COM 781.229.0070 73

SEGUE SOFTWARE WWW.SEGUE.COM/ADS/CORBA 800.287.1329 27

SIC CORPORATION WWW.ACCESS21.CO.KR 822.227.398801 21

SILVERSTREAM SOFTWARE, INC. WWW.SILVERSTREAM.COM 888.823.9700 103

SLANGSOFT WWW.SLANGSOFT.COM 972.375.18127 38

SLANGSOFT WWW.SLANGSOFT.COM 972.375.18127 78

SD ’00 WEST WWW.SDEXPO.COM 65

SOFTWARE INSTRUMENTS WWW.SO-IN.COM 972.633.8555 81

SOFTWIRED INC. WWW.JAVAMESSAGING.COM/IBUS (41) 1.445.2370 7

SYBASE INC. WWW.SYBASE.COM 800.8.SYBASE 25

SYMANTEC WWW.SYMANTEC.COM 4

SYS-CON PUBLICAITONS WWW.SYS-CON.COM 800.513.7111 84

TIDESTONE TECHNOLOGIES WWW.TIDESTONE.COM 800.884.8665 45

TOGETHERSOFT LLC WWW.TOGETHERSOFT.COM 919.772.9350 49

UNIFY CORPORATION WWW.EWAVECOMMERCE.COM 800.GO.UNIFY 37

VISICOMP, INC. WWW.VISICOMP.COM 831.335.1820 31

VISUALIZE INC. WWW.VISUALIZEINC.COM 602.861.0999 85

VSI WWW.VSI.COM/BREEZE 800.556.4VSI 33

ADVERTISINGINDEX

Java COM

86 DECEMBER 1999

MERANT Supports J2EE
(Mountain View, CA) – MER-
ANT announces support for
Java
Database
Connec-
tivity 2.0 tech-
nology fea-
tures essential
for building
applications based on Java 2
Platform, Enterprise Edition.
Extending data access and
integration capabilities across
enterprise-class Java applica-
tions, the JDBC 2.0 technolo-
gy is said to provide cus-
tomers with increased inter-
operability, flexibility and
performance. The new JDBC
2.0 technology support is
included in an upgraded ver-
sion of MERANT’s DataDirect
SequeLink product, currently
in customer beta trials, and
will be widely available in
early 2000.
www.merant.com

Oracle and MindQ
Team Up Again
(Reston,VA) –
MindQ Publish-
ing, Inc.,
announces that
Oracle Corpora-
tion has renewed its
agreement to resell MindQ’s
developer training for Java. In
addition, MindQ will be devel-
oping four custom Java courses
for Oracle to include in their
portfolio. The two companies

also plan to work together to
help developers fulfill the
requirements of the Certifica-

tion Initiative for
Enterprise Develop-
ment, an industry-
wide effort to estab-
lish standards for skill
validation of Java
developers.

www.mindq.com

Symantec Delivers
VisualCafé 4

(Cupertino, CA) – Symantec
Corporation has released the
VisualCafé 4 development
environment for Java. The
next-generation VisualCafé

takes full advantage of
the new Java 2

platform stan-
dards from
Sun Microsys-

tems, including
multiserver Enter-

prise JavaBeans support,
Java ServerPages, servlets,
CORBA, multitier distributed
debugging and other
advanced Java technologies.
www.symantec.com

Rational Accelerates
E-Development
(Lexington, MA) –
Rational intro-
duces Rational
Suite 1.5 and Rational
ClearCase 4.0, featuring new
integration and enhanced
functionality that enable soft-
ware teams to design, build,
test and manage change to
Internet software. This inte-
gration is facilitated via Uni-
fied Change Management
(UCM), a new workflow
process that combines prod-
ucts to automate the man-
agement of activities and
software artifacts across the
e-development lifecycle.
www.rational.com

StarBase Corporation
to Acquire ObjectShare
(Santa Ana, CA) – StarBase

Corporation, a leading
provider of e-business life-
cycle management
solutions, has signed a
definitive agreement to
acquire ObjectShare,
Inc., a leading provider
of object-oriented and e-busi-
ness professional services.

“This acquisition represents
another important step in the
execution of our strategy to
offer our customers complete
end-to-end e-business lifecy-
cle products and services,”
according to William Stow,
CEO of StarBase.
www.starbase.com

Vision Software Closes
Mezzanine Funding Round
(Oakland, CA) – Vision Soft-
ware has closed a $15.7 mil-
lion mezzanine funding
round led by Goldman Sachs
that also includes invest-
ments
from
Marc Andreessen, founder of
Netscape, Inc., and Loewen-
thal Capital, exclusive
investor for Hasso Plattner,
cofounder and CEO of SAP,
Inc., along with others. Vision
Software will leverage the
investment to fuel continued
adoption of its e-business
automation system.
www.vision.com

Pervasive Outlines
Strategic Initiatives
(Austin, TX) – Pervasive Soft-
ware Inc. has outlined its
“Applications Everywhere”
strategy designed to further
capitalize on growth opportu-
nities in the market for e-
business applications. Perva-
sive is planning significant
incremental investments over
the next four quarters as it
launches an e-business
alliance
program
designed to
unite Web

application developers with
Web integrators, a telemarket-
ing call center to provide sales
and technical assistance, a
brand awareness campaign
and accelerated delivery of
new features in Tango 2000
and Pervasive.SQL 2000. In
addition, Pervasive has
expanded support for corpo-
rate servers to include avail-

ability of Pervasive.SQL
2000 and Tango 2000 for
Solaris and Linux.
www.pervasive.com

JDJ

Consulting

WWW.

jdjconsulting

.COM

87DECEMBER 1999

Java COM

Employment
Ad

Java COM

88 DECEMBER 1999

Employment
Ad

89DECEMBER 1999

Java COM

Employment
Ad

Java COM

90 DECEMBER 1999

Employment
Ad

91DECEMBER 1999

Java COM

Employment
Ad

Java COM

92 DECEMBER 1999

Employment
Ad

93DECEMBER 1999

Java COM

Employment
Ad

Java COM

94 DECEMBER 1999

Employment
Ad

95DECEMBER 1999

Java COM

Employment
Ad

Java COM

96 DECEMBER 1999

Employment
Ad

97DECEMBER 1999

Java COM

Employment
Ad

Java COM

98 DECEMBER 1999

Employment
Ad

99DECEMBER 1999

Java COM

Employment
Ad

Java COM

100 DECEMBER 1999

Employment
Ad

101DECEMBER 1999

Java COM

Employment
Ad

Java COM

102 DECEMBER 1999

This was actually the first book on Enterprise JavaBeans that came
into the market. Enterprise JavaBeans was released in June and made
its debut at JavaOne this year. This is a pretty good book for develop-
ers who like to see a lot of code. The examples in the book are used
to develop a fairly complex application and the code isn’t meant for
novices. Tom Valesky presents many examples. I like the fact that the
book takes an example and builds its complexity in successive chap-
ters. There’s good coverage of distributed architectures and transac-
tions. The author has also dedicated a chapter to provide some excel-
lent guidelines for building distributed systems. For readers just
starting out in distributed applications, the author provides the
appropriate background. This book isn’t for everyone, though. Read-
ers already familiar with distributed systems
and transactions may not want to go through
the tutorial style followed in the book and may
find the detailed code discussions irritating.

The book is written in an easy, informal,
tutorial style. It’s well organized and easy to
follow. In some places the discussion becomes
pretty terse, so you may want to take a few
breaks when reading. My suggestion to read-
ers who go out and purchase this book: get the
software for running the code, install it and
then read the book. Test out the examples and
read the book in sequence.

Chapters 1 and 2 focus on introducing the
reader to the concepts that form the basis of
this book. The first chapter provides an excel-
lent discussion on the evolution of computer
architectures from the single-tier mainframe
model to the n-tier distributed architecture. In
this discussion the author also covers the
basics of distributed transaction processing.
The chapter ends by showing how Enterprise
JavaBeans fit into the big picture. A brief introduction to the EJB spec
is provided. Chapter 2 discusses the Enterprise JavaBeans architec-
ture. The concepts are explained well, with the right level of detail. It
makes a good stand-alone chapter for reading without requiring the
reader to read the rest of the book. The author introduces the appro-
priate number of class methods to give an overview without confus-
ing the reader. The code is developed using WebLogic and EJBHome
software packages.

Chapters 3–6 focus on the various types of EJB development.
These chapters follow a pattern: an introduction to the concept, fol-
lowed by design choice for the example, then a detailed discussion of
the example as it is built in parts. It concludes with an analysis of
what goes on behind the scenes. As mentioned earlier, a tutorial style
is followed, with Chapter 3 focusing primarily on creating a simple
client for a “hello, world” example. The design, implementation and
deployment of software are explained in detailed, concise steps. The
last section of this chapter summarizes what really went on behind
the scenes as the reader developed this example. This is again typical
of the author’s tutorial style. Chapter 4 provides a good overview of
session beans. The example in this chapter successfully brings out

the main features and functionality offered by session beans. It also
discusses transactions vis-à-vis EJBs. An online shopping example is
developed using stateful session beans, followed by an example
using stateless session beans. The next chapter (Chapter 5) discuss-
es entity beans and persistence management in EJBs. The examples
offered in this chapter reuse code from the previous chapter to illus-
trate design with container-managed persistence as well as bean-
managed persistence.

Chapter 6 deals with the topic of developing EJB clients. The
author purposely deferred discussions on writing the client till this
chapter. Instead of implementing a complicated client, he gives
examples of “small” single-purpose clients that bring out different

points he’s trying to make. This makes the
code and the discussion very easy to follow.
The example gets a little long, but is appro-
priate at this stage. Chapter 7 goes into some
depth about a few necessary but pretty bor-
ing parts of the EJB spec: deployment. The
author does a good job of providing the req-
uisite information for the reader to get a han-
dle on this topic. The chapter ends with a dis-
cussion on deployment issues that develop-
ers may face such as caching and persis-
tence. The author also provides a set of
guidelines for developers to follow when
dealing with EJB containers.

Chapter 8 is a unique chapter that shows
the author’s grasp of distributed systems. It
encapsulates a lot of hard-won technical
experience, which is useful to the developer
of distributed systems. This is a rare and
valuable commodity. Guidelines on trans-
action design, business logic design, data-
bases, testing and application design are

provided in concise discussions.
Chapter 9 sums up all the concepts in the book by walking the

reader through a complex example. The “time tracker” example is
well picked. It uses the major features from the EJB spec in a real-
world system. It demonstrates the use of both session and entity
beans. There is also a session bean (TimeTrackerBean) that in turn
uses an entity bean (EmployeeBean). The design is well explained.
This chapter is useful since it’s hard to find an example that illus-
trates the different aspects of EJBs. Most tutorial classes fail to pro-
vide such examples. This chapter alone makes the book worth buy-
ing. Chapter 10 briefly talks about existing EJB vendors and future
directions for EJB. Of course, you can compare the predictions with
what has really happened since the book is a few months old. An
Appendix carries complete code listings. These are also available in
the accompanying CD.

In conclusion, this is a good book for programmers and develop-
ers who are trying to get an introduction to EJBs and like playing
around with plenty of code.

An Introduction to EJBs
with Lots of Code REVIEWED BY AJIT SAGAR

ajit@sys-con.com

J A V A B O O K R E V I E W

Enterprise JavaBeans:
Developing Component-Based Distributed Applications
by Thomas C. Valesky
352 pages, Addison Wesley

103DECEMBER 1999

Java COM

SILVERSTREAM
www.silverstream.com

Java COM

104 DECEMBER 1999

KL GROUP
www.klgroup.com/field

